Minimum number of diagonal transversals in a diagonalized cyclic diagonal Latin squares of order n, https://oeis.org/Axxxxxx n=1, a(1)=0 Announcement: https://vk.com/wall162891802_2443, Eduard I. Vatutin, Jul 11 2023 Way of finding: Brute Force + DLX 0 n=3, a(3)=0 - n=5, a(5)=5 Announcement: https://vk.com/wall162891802_2443, Eduard I. Vatutin, Jul 11 2023 Way of finding: Brute Force + DLX 0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2 n=7, a(7)=27 Announcement: https://vk.com/wall162891802_2443, Eduard I. Vatutin, Jul 11 2023 Way of finding: Brute Force + DLX 0 1 2 3 4 5 6 2 3 1 5 6 4 0 5 6 4 0 1 2 3 4 0 6 2 3 1 5 6 2 0 1 5 3 4 1 5 3 4 0 6 2 3 4 5 6 2 0 1 n=9, a(9)=241 Announcement: https://vk.com/wall162891802_2443, Eduard I. Vatutin, Jul 11 2023 Way of finding: Brute Force + DLX 0 1 2 3 4 5 6 7 8 1 2 3 4 6 7 8 0 5 3 4 6 8 5 1 7 2 0 6 8 5 7 0 3 1 4 2 8 5 7 0 1 4 2 6 3 7 0 1 2 3 8 4 5 6 2 3 4 6 8 0 5 1 7 4 6 8 5 7 2 0 3 1 5 7 0 1 2 6 3 8 4 n=11, a(11)=4523 Announcement: https://vk.com/wall162891802_2443, Eduard I. Vatutin, Jul 11 2023 Way of finding: Brute Force + DLX 0 1 2 3 4 5 6 7 8 9 10 2 3 1 4 5 6 7 9 10 8 0 6 9 7 8 10 0 2 1 4 3 5 7 8 9 10 0 2 1 3 5 4 6 1 4 3 5 6 7 9 8 0 10 2 9 10 8 0 2 1 3 4 6 5 7 3 5 4 6 7 9 8 10 2 0 1 8 0 10 2 1 3 4 5 7 6 9 10 2 0 1 3 4 5 6 9 7 8 4 6 5 7 9 8 10 0 1 2 3 5 7 6 9 8 10 0 2 3 1 4 n=13, a(13)=127339 Announcement: https://vk.com/wall162891802_2441, Eduard I. Vatutin, Jul 18 2023 Way of finding: Brute Force + DLX 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 1 4 6 0 8 5 9 11 12 10 7 6 9 8 11 10 4 12 3 7 5 2 0 1 10 7 12 5 0 11 2 9 1 3 6 4 8 8 11 9 10 12 6 7 4 5 0 1 2 3 12 5 7 0 2 10 1 11 3 4 8 6 9 1 4 3 6 8 2 9 0 11 10 7 12 5 9 10 11 12 7 8 5 6 0 2 3 1 4 7 0 5 2 1 12 3 10 4 6 9 8 11 11 12 10 7 5 9 0 8 2 1 4 3 6 5 2 0 1 3 7 4 12 6 8 11 9 10 3 6 4 8 9 1 11 2 10 12 5 7 0 4 8 6 9 11 3 10 1 12 7 0 5 2 Jul 18 2023