

Eduard I. Vatutin

Stepan E. Kochemazov

Oleg S. Zaikin
Vitaly S. Titov

Tula, Tula State University, 2017

What is Latin squares?

$$
\begin{array}{lr}
A=\left\|a_{i j}\right\| \\
i, j=\overline{1, N} & \forall i, j, k=\overline{1, N}, j \neq k:\left(a_{i j} \neq a_{i k}\right) \wedge\left(a_{j i} \neq a_{k i}\right) \\
& \forall i, j=\overline{1, N}, i \neq j:\left(a_{i i} \neq a_{j j}\right) \wedge\left(a_{N-i+1, N-i+1} \neq a_{N-j+1, N-j+1}\right)
\end{array}
$$

$N=|S|$
$S=\{0,1,2, \ldots, N-1\}$

$$
\left(\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 9 & 4 & 3 & 6 & 7 & 5 & 0 & 8 \\
2 & 9 & 3 & 1 & 7 & 0 & 5 & 8 & 4 & 6 \\
3 & 4 & 1 & 2 & 8 & 7 & 9 & 6 & 5 & 0 \\
4 & 3 & 5 & 9 & 2 & 1 & 8 & 0 & 6 & 7 \\
5 & 6 & 4 & 8 & 1 & 2 & 0 & 9 & 7 & 3 \\
6 & 5 & 8 & 7 & 0 & 3 & 2 & 1 & 9 & 4 \\
7 & 8 & 6 & 0 & 9 & 4 & 1 & 2 & 3 & 5 \\
8 & 7 & 0 & 5 & 6 & 9 & 3 & 4 & 1 & 2 \\
9 & 0 & 7 & 6 & 5 & 8 & 4 & 3 & 2 & 1
\end{array}\right)
$$

Normalized LS of order 10

$$
N!\times(N-1)!
$$

$\left(\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 2 & 4 & 9 & 0 & 6 & 5 & 1 & 3 & 8 \\ 8 & 3 & 6 & 7 & 5 & 9 & 0 & 2 & 4 & 1 \\ 2 & 6 & 8 & 5 & 1 & 7 & 4 & 0 & 9 & 3 \\ 5 & 8 & 9 & 1 & 7 & 0 & 3 & 4 & 6 & 2 \\ 9 & 4 & 1 & 2 & 8 & 3 & 7 & 6 & 0 & 5 \\ 4 & 7 & 5 & 6 & 9 & 1 & 8 & 3 & 2 & 0 \\ 3 & 0 & 7 & 8 & 2 & 4 & 1 & 9 & 5 & 6 \\ 6 & 5 & 0 & 4 & 3 & 2 & 9 & 8 & 1 & 7 \\ 1 & 9 & 3 & 0 & 6 & 8 & 2 & 5 & 7 & 4\end{array}\right)$
Normalized DLS of order 10

$$
(N-1)!
$$

Lets try to get diagonal Latin square!

- http://evatutin.narod.ru/evatutin LsEdit.7z

Why is this interesting?

Applied problems:

- experiment planning
- cryptography
- error correcting codes
- scheduling
- algebra, combinatorics, statistics, ...

Mathematical problems:

- existence of a triple of MOLS/MODLS
- generating functions

■ asymptotic behavior of combinatorial characteristics based on DLSs (OEIS)

- number theory (relations between different fields of knowledge)
- magic squares
- Sudoku (LS of order 9 with additional constraints)

Searching for pairs of ODLS of order 10

L. Euler expected that for $N=10$ ODLS doesn't exist First pair - Parker et al., 1960

SAT@Home, 04.2015

0	1	2	3	4	5	6	7	8	9
4	9	0	8	5	6	3	1	2	7
2	5	7	9	6	4	0	8	1	3
9	0	4	6	8	7	1	5	3	2
6	7	5	2	1	3	8	0	9	4
1	8	3	5	7	2	9	6	4	0
7	3	1	0	9	8	4	2	6	5
8	2	6	4	0	9	5	3	7	1
3	4	8	1	2	0	7	9	5	6
5	6	9	7	3	1	2	4	0	8

Gerasim@Home, 04.2017

Present for citerra, 2017 :)

Very rare combinatorial objects: ~30 millions DLS of order 10 has only 1 pair of ODLS!

We need to use transversals...

Searching for ODLS: approaches

- Brute Force + backtracking + clippings + ordering $+\ldots$ (very long)
- SAT (some tens of hours, long)
- filling by pairs of elements [$\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{\mathrm{ij}}$] (long)
- using transversals (fast) - $\underline{200-800}$ DLS/s for different algorithms!

$a)$				
0	1	2	3	4
4	2	3	0	1
3	4	1	2	0
1	3	0	4	2
2	0	4	1	3

Crossing and orthogonal transversals

								9	
8	1	2			6		5		9
	5				2	4	3		6
6	8	5			9	7		4	
9		7			4	2	6	3	
4		9			8	6	7	5	
	6	3	3		5	9			4
5	7	6		9	1	8	4	2	
7	9	4			3		8	6	
	4		。						

$$
\begin{aligned}
& T_{1} \cap T_{2}=\{3,7,5,1\} \\
& T_{1} \perp T_{3}\left(T_{1} \cap T_{2}=\varnothing\right) \\
& T_{2} \cap T_{3}=\{6\}
\end{aligned}
$$

Transversal 1

Transversal 2

Transversal 3

Some combinatorial characteristics of DLS

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane
Minimal and maximal number of transversals:
1, 0, 0, 8, 3, 32, 7, 8 ($\mathrm{N}<9$), evatutin, veinamond, 2017
$1,0,0,8,15,32,133,384$ ($N<9$), evatutin, veinamond, 2017
Minimal and maximal number of diagonal transversals:
$\mathbf{1}, \mathbf{0}, \mathbf{0}, 4, \mathbf{1}, \mathbf{2}, \mathbf{0}, \underline{0}(\mathrm{~N}<9)$, evatutin, veinamond, 2017
$1,0,0,4,5,6,27,120(N<9)$, evatutin, veinamond, 2017
Bolded red values calculated using Gerasim@Home project
(1 week with 1,5 TFLOP/s real performance)
http://gerasim. boinc.ru

- analytic calculating of presented sequences is [impossible?/difficult] (do you know formulas for them?)
- sequences was reviewed and added to OEIS by our collective!

Searching for triples of MODLS of order 10: are they exists?

Orthogonality characteristic 74,
citerra
(world record, 2016)

Orthogonality characteristic 74,
evatutin (2017)

- Can characteristic value be increased? It is open question...
- Are decisions differ?
- Are decisions have special properties?

Special types of squares and its properties

Symmetric DLS examples

SODLS

0	1	2	3	4	5	6	7	8	9
9	8	7	6	5	4	3	2	1	0
8	0	6	7	9	3	4	5	2	1
1	2	5	4	3	9	7	6	0	8
7	9	3	1	2	6	8	0	4	5
6	5	1	9	0	7	2	8	3	4
5	4	0	8	6	2	1	3	9	7
3	6	4	5	1	8	0	9	7	2
4	3	8	2	7	0	9	1	5	6
2	7	9	0	8	1	5	4	6	3

String-inverse DLS

0	1	2	3	4	5	6	7
6	2	3	7	0	4	5	1
4	5	1	0	7	6	2	3
5	6	7	4	3	0	1	2
7	3	6	2	5	1	4	0
2	7	4	1	6	3	0	5
3	0	5	6	1	2	7	4
1	4	0	5	2	7	3	6

Double symmetric DLS

Related combinatorial characteristics of DLS

DLS main classes amount:
1, 0, 0, 1, 2, 2, 972, 4873096 ($\mathrm{N}<10$), evatutin, whitefox, 2017
http://forum.boinc.ru/default.aspx?g=posts\&m=87549\#post87549

Number of the normalized symmetric and double symmetric DLS:
0, 2, 64, 3612 672, 82731715264512 ($N<11$), evatutin, 2017
0, 2, 0, 15-780 12288 ($N<9$), evatutin, 2017

Value 15780 was wrong due to incomplete symmetry definition (thanks to Alexey D. Belyshev (whitefox) for comments!)

Number of reduced pairs of orthogonal diagonal Latin squares:
1, 0, 0, 2, 4, 0, 320 ($\mathrm{N}<8$), evatutin, 2017

Maximum number of orthogonal diagonal Latin squares for one diagonal Latin square:
$1,0,0,1,1,0,3,824, \geq 516, \geq 8(N<11)$, hoarfrost, evatutin, 2017

Sequences was also reviewed and added to OEIS by our collective!

Some else symmetries?

0	1	2	3	4	5	6	7	8
6	3	0	2	7	8	1	4	5
3	2	1	8	6	7	0	5	4
7	8	6	5	1	3	4	0	2
8	6	4	7	7	0	5	3	1
2	7	5	6	8	4	3	1	0
5	4	7	0	3	1	8	2	6
4	5	8	1	0	2	7	6	3
1	0	3	4	5	6	2	8	7

Centrally symmetric DLS examples

Number of centrally symmetric diagonal Latin squares of order n with constant first row:

1, 0, 0, 2, 8, 0, 2816, 135 168, 327254016 ($N<10$), evatutin, 2017

Exist only for $N!=4 n+2$, doesn't exist for $N=10:($

Formulas for symmetries

$[i, j]<=>\left[i^{\prime}, j^{\prime}\right]=f([i, j])$
$[\mathrm{i}, \mathrm{j}]<=>[\mathrm{i}, \mathrm{N}-1-\mathrm{j}]$ - horizontal symmetry
$[i, j]<=>[N-1-i, j]-$ vertical symmetry
$[\mathrm{i}, \mathrm{j}]<=>[\mathrm{N}-1-\mathrm{i}, \mathrm{N}-1-\mathrm{j}]$ - central symmetry

Simple way: using formulas like $f(i, j)=A i+B j+C$ and $g(i, j)=D i+E j+F$

Tuple ($\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$) identifies the symmetry!
(1, 0, 0, 0, -1, N - 1) - horizontal symmetry
$(-\mathbf{1}, \mathbf{0}, \mathbf{N}-\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0})-$ vertical symmetry
($\mathbf{- 1}, \mathbf{0}, \mathbf{N}-\mathbf{1}, \mathbf{0}, \mathbf{- 1}, \mathbf{N}-\mathbf{1}$) - central symmetry
...and at least 13 different (generalized) symmetries for DLS of order 10!!!

Generalized symmetries example

$f=[i+4 ; j+4]$

$f=[-i+3 ; j+4]$

2	8	6	9	4	1	3	5	7	0
9	0	2	4	8	5	7	6	1	3
4	7	5	6	0	2	1	8	3	9
1	4	8	7	3	6	5	0	9	2
7	6	3	0	1	9	4	2	8	5
5	9	1	8	7	3	2	4	0	6
8	5	7	3	9	0	6	1	2	4
3	1	4	2	5	8	0	9	6	7
0	2	9	5	6	7	8	3	4	1
6	3	0	1	2	4	9	7	5	8

2:1 structure

Torus movements

Additional combinatorial structures

4:1 structures (very very very rare :), 50x vs $\mathbf{2 : 1}$)

2:1 pace of obtaining solutions:

- 0,5 - 1 per day within Gerasim@Home project ($\sim 600 \mathrm{PCs}, ~ \sim 5$ TFLOP/s)
- 20 - $\mathbf{3 0}$ per day on Core i7 4770 (Haswell) with 4 threads

Search and collecting of the unique ODLS CFs

On 19.11.2017 collection includes 427614 unique ODLS CFs (1 CF - isomorphism class of 7680 or 15360 DLS). Available for free access at:
http://forum. boinc.ru/default.aspx?q=posts\&m=88700
http://forum.boinc.ru/resource.ashx?a=2940

From collection items:

- 6 CFs (Parker, Brown, 1960 - 2000)
- 144 CFs (Nauchnik + SAT@Home volunteers, 2013 - 2015)
- >2 $\mathbf{7 3 9}$ symmetric CFs (citerra, evatutin + Gerasim@Home volunteers, from 2016)
- 1227 «Brown» CFs (Brown, whitefox, citerra, 2016-2017)
- 30502 SODLS CFs (H. White + whitefox, 2017)
- 149570 CFs from Gerasim@Home project (evatutin + Gerasim@Home volunteers, 2017), $\mathbf{\sim} \mathbf{1 0 0 0}$ CFs per day
- >137931 CFs from ODLK@Home project (Progger + ODLK@Home volunteers, 2017)
- ~300 CFs (different sources, 2000)

Triple of MODLS or pseudo triple with orthogonality characteristic greater than 74 not found!

Getting ODLS CFs within Gerasim@Home project

Strategy of search: getting source square (random generator, symmetric random generator), try to get orthogonal square, add the unique CF to collection

- - Random
- Symmetric Random
- Brute Force with bits arithmetic (03.2017)
- DLX v1, array (04.2017)
- DLX v2, pointers (05.2017)
- SN DLS (SCFs) (08.2017)
- horizontal symmetry (10.2017)

I have some additional minutes? :)

Related works...

Enumerating the number of DLS

Approaches:
■ Brute Force, backtracking, SAT - 0,01 DLS/s (2014)
■ diagonal filling - $\mathbf{2 8}$ DLS/s
■ out of order filling cells with $|S|=1-15000$ DLS/s
■ fast check for sets of available values - 38000 DLS/s
■ early clipping for cells with $|S|=0-101000$ DLS/s
■ variable order of filling the cells - $\mathbf{2 4 0} 000$ DLS/s
■ special program implementation with N^{2} nested loops - 340000 DLS/s
■ use the principal of minimum abilities - 790000 DLS/s
■ clipping for selected depth only - 1100000 DLS/s
■ use the formulas for magic squares - 1800000 DLS/s
■ use the bits arithmetic magic - 6600000 DLS/s (2016)

Pace increased by 8 orders using algorithmic optimization without parallelization!

Pace can be additionally increased using SCFs...

Results: number of DLS of order $\mathbf{N}<10$

A274171 (Number of diagonal Latin squares of order n with first row 1..n)
1, 0, 0, 2, 8, 128, 171200, 7447587840, 5056994653507584

A274806 (Number of diagonal Latin squares of order n)
$1,0,0,48,960,92160,862848000,300286741708800$, 1835082219864832081920
$L_{10} \simeq(7,6 \div 10,9) \cdot 10^{22}$
~250 000 years at Gerasim@Home distributed computing project
~1 year at 1 PFLOP/s supercomputer (who can help us? :))

- Gerasim@Home (~ 500 PCs, ~ 3 months, 2-5 TFLOP/s), http://gerasim. boinc.ru
- Matrosov academician computing cluster (~ 500 24/7 CPU cores, ~ 3 months)

Classification of DLS of order 10 by number of orthogonal squares

From all ODLS CFs we have (on 02.04.2017):

- 1:0 - absolute majority (~ 1 by 30000000 DLS, bachelor)
- 1:1 — >400 000 (most of known ODLS)
- 1:2->4 100 (symmetric and not!)
- 1:3-4 (whitefox, progger, 2017)
- 1:4-209
- 1:6-6
- 1:8-4
- some else?...

<Treshka» from whitefox

Different types of classification are under development (fish, rhombus, ...), classification process needs to be automated!

GPU implementation of Euler-Parker approach (I. Shutov)

10x times faster than single threaded CPU implementation

Based on:

- parallel processing of different squares on different SMXs
- parallel building of sets of transversals based on 10 cells (with WARP)
- efficient use of the CUDA shared memory (for square being processed) and register memory (for additional data structures)

Advantages and disadvantages:

- faster than single threaded CPU (~ 2500 CUDA cores per GPU working in parallel!)
- slower that peak abilities of GPU (for example, molecular dynamics or N -body problem - 600x times faster than CPU)

Problems:

- Recursive algorithm (but iterative implementation)
- irregular if's patterns (difficult to effective execution of WARPs)
- irregular memory accesses

Dancing Links X algorithm (DLX, D. Knuth, 2000)

At now $4 x$ times faster than bits arithmetic approach

Based on fast decision of the exact cover problem solving

Generating of DLS -

$$
\mathrm{N}^{3} \times 3 \mathrm{~N}^{2}+2 \mathrm{~N}
$$

Generating of normalized DLS -

$$
\mathrm{N}^{3}-\mathrm{N}^{2} \times 3 \mathrm{~N}^{2}+2 \mathrm{~N}
$$

Transversals set building -

$$
\mathrm{N}^{2} \times 3 \mathrm{~N}+2
$$

Getting of ODLS (directly) -

$$
N^{3} \times 4 N^{2}+2 N
$$

Getting of ODLS using transversals set (efficient) -
$\mathrm{T} \times \mathrm{N}^{2}$

Can be implemented on GPU? Shared memory volume restriction? Irregular memory access patterns?

Strong normalized DLS

2723433984 different fillings (huge amount)

440192 different fillings only
(~ 6000x times less)

67 different fillings only!!!
(~ 6500x times less)

- ODLS@Home, Gerasim@Home - analyzing different lines (some interesting features during canonization DLS by LS)
- 67 lines of SCFs with different properties (multiplicity, CFs density, ODLS CFs density, LS-by-DLS canonization features)

Cross correlation of SCFs

Gerasim@Home, ~ 60000 CFs, random + symmetry + Browns

Total, ~ 230000 CFs

- ~ 40 hours for calculating, requires database with ODLS properties
- different multiplicity of lines
- SODLS

Separating of SCFs to isomorphism classes

213920 different DLSs

213920 different DLSs also, why?
Same isomorphism class!

- require to change order of filling of lexicographic strings (simple, but CFs are differ);
- require to work with partially filled CFs (new algorithm, implementation, optimization);
- can be used for fast enumerating (10 x - 100 x times faster).

Related work

Collecting CFs and new combinatorial structures search:

- triple of MODLS (is it exist?)
- different structures?

GPU implementation of transversal and cover algorithms:

- Euler-Parker approach - need to deploy to Gerasim@Home project
- DLX - need to develop (it is faster on CPU, and what about GPU?)

Enumeration problems (OEIS):

- expanding current sequences
- enumerating DLS and ODLS of special kind (string-inverse, symmetric, ...) and its CFs
- special procedures for special types of squares (symmetric DLX, ...)

Pseudo triples:

- 3 kinds of pseudo triples, only 1 was investigated in details
- special approaches (optimization problem, ACO?, ...)

Thank you for your attention!

Thanks to all the volunteers who took part in the Gerasim@home project!

