Southwest State University Department of computer sciences

CLIQUES PROPERTIES FROM DIAGONAL LATIN SQUARES OF SMALL ORDER

Vatutin E.I., Nikitina N.N., Manzuk M.O., Zaikin O.S., Belyshev A.D.

What is Latin squares?

$$A = ||a_{ij}||$$

 $i, j = \overline{1, N}$
 $N = |S|$
 $S = \{0, 1, 2, ..., N - 1\}$

$$\forall i, j, k = \overline{1, N}, j \neq k : \left(a_{ij} \neq a_{ik}\right) \land \left(a_{ji} \neq a_{ki}\right)$$

$$\forall i, j = \overline{1, N}, i \neq j : \left(a_{ii} \neq a_{jj}\right) \land \left(a_{N-i+1, N-i+1} \neq a_{N-j+1, N-j+1}\right)$$

Normalized LS of order 10

$$N! \times (N-1)!$$

Normalized DLS of order 10
$$(N-1)!$$

Why is this interesting?

Applied problems:

- experiment planning
- cryptography
- error correcting codes
- scheduling
- algebra, combinatorics, statistics, ...

Mathematical problems:

- existence of a triple of MOLS/MODLS of order 10 (or larger clique)
- increasing world record of orthogonality characteristic for pseudo triple of MOLS (291/300) or MODLS (274/300)
- generating functions
- asymptotic behavior of combinatorial characteristics based on DLSs (OEIS)
- number theory (relations between different fields of knowledge)
- magic squares
- Sudoku (LS of order 9 with additional constraints)

Brief history and approaches

- Euler triple of MOLS of order 10 does not exist (<u>disproved</u>);
- Parker et al. (1960) <u>first pair of MOLS</u> of order 10 using transversals;
- Brown et al. (1995) horyzontally symmetric DLS, <u>1:4</u>;
- Zaikin et al. (2015—2016) SAT approach (system of Boolean equations), ~100 CFs of ODLS, onces;
- Vatutin et al. (from 2017) <u>RS+LBF generator -> transversals + DLX</u>, ~1M CFs of ODLS, <u>twices</u>, <u>1:3</u>;
- Vatutin et al. (2017) <u>plane symmetry generator -> transversals + DLX</u>, ~200k CFs of ODLS, <u>1:6</u>, <u>1:8</u>, <u>rhombus-4</u>, <u>line-4</u>, <u>line-5</u>, <u>loop-4</u>, <u>fish</u>;
- Vatutin et al. (from 2017) <u>central symmetry</u>, <u>partial central and plane symmetries</u>, <u>generalized symmetries</u>, <u>neighborhoods of generalized symmetris generator -> canonizer -> postprocessor</u>, ~7M CFs of ODLS, <u>1:5</u>, <u>1:7</u>, <u>1:10</u>, <u>rhombus-3</u>, <u>cross</u>, <u>flyer</u>, <u>tree-1</u>, <u>Venus</u>, <u>Daedalus-8</u>, <u>Daedalus-10</u>, <u>robot</u>, <u>stingray</u>;
- Vatutin et al. (from 2019) none transversal search for ODLS.

L. Euler expected that for N=10 ODLS doesn't exist

First pair — Parker et al., 1960

SAT@Home, 04.2015

Very rare combinatorial objects: ~30 millions DLS of order 10 has only 1 pair of ODLS!

Gerasim@Home, 04.2017

Searching for ODLS: approaches

- Brute Force + backtracking + clippings + ordering + ... (very long)
- SAT (some tens of hours, long)
- filling by pairs of elements [a_{ij}, b_{ij}] (long)
- using transversals (fast) <u>200 800 DLS/s</u> for different algorithms!
- using transversals with canonizer (<u>~8000 DLS/s</u> effective pace)

Neighborhoods of generalized symmetries (01.11.2019)

Properties of cliques within combinatorial structures of small order (N=4)

Properties of cliques within combinatorial structures of small order (N=5)

Properties of cliques within combinatorial structures of small order (N=7)

- clique-2, <u>1 CF</u>
- clique-4, **1 CF**

Properties of cliques within combinatorial structures of small order (N=8)

Properties of cliques within combinatorial structures of small order (N=9)

197 different combinatorial structures (some of them with cliques):

- 24N54M4C clique-3, 1 CF;
- <u>120N480M5C</u> clique-4, 1 CF;
- <u>24N60M4C</u> clique-4, 1 CF;
- 32N86M13C clique-3, 3 CFs;
- 48N126M6C clique-6, 2 CFs.

Figure 148. Graph of ODLS from workunit R9_000463421/02. 2017.12.15. Rake Search project. [B@P] Daniel (BOINC@Poland) and LCB001 (Hardware Canucks)

http://evatutin.narod.ru/evatutin ls all structs n1to8 eng.pdf http://evatutin.narod.ru/evatutin ls all structs n9 eng.pdf http://evatutin.narod.ru/evatutin_ls_all_structs_eng.pdf

based on RakeSearch project results (https://rake.boincfast.ru/rakesearch/)

Properties of cliques within combinatorial structures of order N=10

More then clique-2 subgraphs don't known...

Searching for ODLS from same main class?

0	1	2	3	4	5	6	7	8	9
5	9	6	4	8	1	3	0	2	7
9	0	1	8	6	2	7	4	5	3
4	6	5	2	0	7	80	3	9	1
2	4	9	7	3	6	1	80	0	5
3	7	ω	9	5	4	0	2	1	6
7	∞	ფ	0	2	9	5	1	6	4
8	5	7	1	9	0	4	6	3	2
6	3	4	5	1	8	2	9	7	0
1	2	0	6	7	3	9	5	4	8

SODLS

 Bennett F.E., Beiliang Du, Hantao Zhang. Existence of self-orthogonal diagonal Latin squares with a missing subsquare // Discrete Mathematics. Vol. 261. 2003 pp. 69-86.

SODI S can be extended

SODLS can be extended for ESODLS

ESODLS (Ed's SODLS) — MODLS from DI Ss within same main class

OEIS sequences (SODLS, H. White):

- A287761 1, 0, 0, 2, 4, 0, 64,
 1152, 224832;
- A287762 1, 0, 0, 48, 480, 0,
 322560, 46448640,
 81587036160.

OEIS sequences (ESODLS, new):

- A309210 1, 0, 0, 1, 1, 0, 5, 23;
- A309598 1, 0, 0, 2, 4, 0, 256,
 4608;
- A309599 1, 0, 0, 48, 480, 0,
 1290240, 185794560.

This site is supported by donations to The OEIS Foundation

OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

```
Search
              (Greetings from The On-Line Encyclopedia of Integer Sequences!)
           Number of extended self-orthogonal diagonal Latin squares of order n with ordered first string.
1, 0, 0, 2, 4, 0, 256, 4608 (list; graph; refs; listen; history; text; internal format
COMMENTS
               A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square
                 orthogonal to its transpose. An extended self-orthogonal diagonal Latin square
                 (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square
                  from the same main class. SODLS is a special case of ESODLS.
LINKS
                Table of n, a(n) for n=1...8.
                E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian)
                <u>Index entries for sequences related to Latin squares and rectangles</u>
                Sequence in context: A287761 A009512 A317411 * A305570 A287651 A163259
                Adjacent sequences: A309595 A309596 A309597 * A309599 A309600 A309601
KEYWORI
                Eduard I. Vatutin, Aug 09 2019
```

How we can find ESODLS? CMS-based search...

Bijective mapping for N^2 cells of square with some special properties

SODLS — one of them...

M-transformations

Different properties of CMS: example 1

CMS[0] = 0 CMS[1] = 1 CMS[2] = 2 CMS[3] = 3 CMS[4] = 4 CMS[5] = 5 CMS[6] = 6 CMS[7] = 7 CMS[8] = 8 CMS[9] = 9 CMS[10] = 30 CMS[11] = 95 CMS[12] = 32	CMS[34] = 33 CMS[35] = 13 CMS[36] = 59 CMS[37] = 60 CMS[38] = 50 CMS[39] = 25 CMS[40] = 28 CMS[41] = 90 CMS[42] = 53 CMS[43] = 67 CMS[44] = 94 CMS[44] = 94 CMS[45] = 19 CMS[46] = 64	CMS[68] = 69 CMS[69] = 68 CMS[70] = 52 CMS[71] = 81 CMS[72] = 26 CMS[73] = 63 CMS[74] = 58 CMS[75] = 79 CMS[76] = 56 CMS[77] = 57 CMS[78] = 17 CMS[79] = 75 CMS[80] = 23
CMS[7] = 7	CMS[41] = 90	CMS[75] = 79
CMS[9] = 9	CMS[43] = 67	CMS[77] = 57
CMS[11] = 95	CMS[45] = 19	CMS[79] = 75
CMS[12] = 32 CMS[13] = 35	CMS[46] = 64 CMS[47] = 24	CMS[80] = 23 CMS[81] = 71
CMS[14] = 48	CMS[48] = 14	CMS[82] = 29
CMS[15] = 92 CMS[16] = 93	CMS[49] = 62 CMS[50] = 38	CMS[83] = 22 CMS[84] = 66
CMS[17] = 78 CMS[18] = 65	CMS[51] = 21 CMS[52] = 70	CMS[85] = 96 CMS[86] = 87
CMS[19] = 45	CMS[53] = 42	CMS[87] = 86
CMS[20] = 31 CMS[21] = 51	CMS[54] = 88 CMS[55] = 99	CMS[88] = 54 CMS[89] = 27
CMS[22] = 83 CMS[23] = 80	CMS[56] = 76 CMS[57] = 77	CMS[90] = 41 CMS[91] = 61
CMS[24] = 47	CMS[58] = 74	CMS[92] = 15
CMS[25] = 39 CMS[26] = 72	CMS[59] = 36 CMS[60] = 37	CMS[93] = 16 CMS[94] = 44
CMS[27] = 89 CMS[28] = 40	CMS[61] = 91	CMS[95] = 11
CMS[29] = 82	CMS[62] = 49 CMS[63] = 73	CMS[96] = 85 CMS[97] = 98
CMS[30] = 10 CMS[31] = 20	CMS[64] = 46 CMS[65] = 18	CMS[98] = 97 CMS[99] = 55
CMS[32] = 12	CMS[66] = 84	OMO[//] - 33

CMS[67] = 43

CMS[33] = 34

0	1	2	3	4	5	6	7	8	9
1	2		4	3	6	5	9	7	8
2		1	5	6	3	4	8	9	7
3	4	5	7	9	∞	1	6	2	0
5	7	4	9	∞	0	2	1	6	3
6	9	80	1	2	4	7	3		5
8	ფ	7	6		1	9	2	5	4
9	6	3		7	2	8	5	4	1
7	5	6	ω	1	9		4	3	2
4	8	9	2	5	7	3	0	1	6

82 hours per ODLS pair
(~10 times slower)

Different properties of CMS: example 2

0	6	5	7	4	8	9	3	2	1
2	1	ω	6	5	9	4		7	3
4	3	9	8	7	1	5	2		6
8	7	3	4	9	5	0	1	6	2
1	8		9	2	3	6	7	4	5
5	9	2	3	8	6	7	4	1	0
7		4	5	1	2	3	6	8	9
3	5	6	2	0	7	1	ω	9	4
6	4	7	1	3		2	9	5	8
9	2	1	0	6	4	8	5	3	7

28 seconds per ODLS pair (~1000 times faster)

- Nested loops implementation?
- GPU/Phi implementation?

What we know about ESODLS of order 10?

- 32010 ESODLS CFs Gerasim@Home results:
 - 30429 SODLS CFs SOLS to SODLS (whitefox);
 - 1581 CFs Gerasim@Home generalized symmetries neighborhoods.

Combinatorial structures:

```
ONCE (A):1 - 32010, where:

1 CFs - 32010

LINE4 (C):1 - 3, where:

2 CFs - 3

LINE4 (C):2 - 3, where:

2 CFs - 3

LOOP4 (E):2 - 76, where:

1 CFs - 2

2 CFs - 74
```

Computing experiment (from 07.2019)

Very rare objects!

0	1	2	3	4	5	6	7	8	9
1	2	0	6	7	9	8	3	4	5
3	6	7	9	8	4	2	5	1	0
4	0	8	5	2	3	7	1	9	6
5	9	4	80	ფ	6	0	2	7	1
7	8	6	4	0	1	3	9	5	2
6	4	5	2	1	7	9	0	3	80
9	5	1	7	6	0	4	8	2	3
2	3	9	0	5	8	1	4	6	7
8	7	3	1	9	2	5	6	0	4

06.08.2019 1CF Loop-4 (re-find in different WU's)

0	1	2	3	4	5	6	7	8	9
1	2	0	4	5	7	9	8	6	3
5	0	1	6	3	9	8	2	4	7
9	3	5	8	2	1	7	4	0	6
4	6	ფ	5	7	80	0	9	2	1
8	4	6	9	1	3	2	5	7	0
7	8	9	0	6	4	5	1	ფ	2
2	9	4	7	80	0	ფ	6	1	5
6	5	7	1	0	2	4	3	9	8
3	7	8	2	9	6	1	0	5	4

09.08.2019 1CF Once (new!)

Getting ODLS CFs within Gerasim@Home project

Strategy of search: getting source square (random generator, symmetric random generator), try to get orthogonal square, add the unique CF to collection

- Brute Force with bits arithmetic (03.2017)
- DLX v1, array (04.2017)
- DLX v2, pointers (05.2017)
- SN DLS (SCFs) (08.2017)
- horizontal symmetry (10.2017)
- different canonization strategy (04.2018)

Related work

Collecting CFs and new combinatorial structures search:

- triple of MODLS (is it exist?)
- different structures?

GPU implementation of transversal, cover and ESODLS algorithms?

Enumeration problems (OEIS):

- expanding current sequences
- enumerating DLS and ODLS of special kind (string-inverse, symmetric, ...) and its CFs

Pseudo triples:

• 3 kinds of pseudo triples, only 1 was investigated in details

Thank you for your attention!

Thanks to all the volunteers who took part in the Gerasim@home project!

WWW: http://evatutin.narod.ru, http://gerasim.boinc.ru

E-mail: evatutin@rambler.ru

LJ: http://evatutin.livejournal.com

Skype: evatutin

