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Latin square

A Latin square (LS) of order N is a square table N × N filled with N 
symbols 0, . . . ,N −1 such that all symbols within a single row or single 
column are distinctcolumn are distinct.

A diagonal Latin square (DLS) is a Latin square in which all symbols in 
both main diagonal and anti diagonal are distinctboth main diagonal and anti-diagonal are distinct.

A transversal of a Latin square is a set of N entries such that no pair of 
th h th l b lthem share the same row, column or symbol.
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Orthogonalityg y

Two Latin squares A = (aij),B = (bij) of order N are orthogonal if all ordered 
pairs (aij bij) 0 ≤ i j ≤ N −1 are distinctpairs (aij , bij), 0 ≤ i, j ≤ N −1 are distinct.

A set of Latin squares of the same order, all pairs of which are orthogonal, 
is called a set of mutually orthogonal Latin squares (MOLS) For diagonalis called a set of mutually orthogonal Latin squares (MOLS). For diagonal 
Latin squares, MODLS is defined similarly.

l d h f dEuler expected that no MOLS of order 10 exists.
First pair — Parker et al., 1960.

MODLS are very rare combinatorial 
objects:objects:

~30 millions DLS of order 10 
has only 1 pair of ODLS!
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Why is it interesting?y g

Applications:
experiment planning experiment planning

 cryptography
 error correcting codes

h d l scheduling

Most famous open problem related to Latin squares: 
 existence of a triple of MOLS of order 10
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Searching for MOLS via Euler-Parker methodg

1. Find all transversals of a given LS of order N.
2 Choose a subset of N disjoint transversals2. Choose a subset of N disjoint transversals.
3. Form an orthogonal mate.
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Searching for MODLS: approaches

• Brute Force + backtracking + clippings + ordering + … (very long)
• SAT (very long)• SAT (very long)
• Euler-Parker (fast) – 200 – 800 DLS/s for different algorithms!
• Euler-Parker with canonizer (searching for symmetrically placed

t l i LS d tti th i l f th i di l dtransversals in a LS and putting them in place of the main diagonal and 
main anti-diagonal by rearranging rows and columns) (very fast, ~8000 
DLS/s)

DLS generators: ~6 600 000 DLS/sDLS generators: 6 600 000 DLS/s

Bottleneck: transversals are to be found in Euler-Parker-based methods.
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Transversals free search for MODLS: SODLS

• Self-orthogonal Latin square (SOLS) denotes a Latin square that is 
orthogonal to its transpose. SODLS is similar.

• Search without transversals is much faster• Search without transversals is much faster.
• Extended self-orthogonal diagonal Latin square (ESODLS) denotes a 

diagonal Latin square that is orthogonal to some diagonal Latin square 
from the same main class (equivalence class obtained via M-
transformations).

• ESODLS is a generalization of SODLS and can be also used to find g
MODLS.

SODLS: B = AT
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SODLS and ESODLS in OEIS

OEIS sequences (SODLS, H. White):
• A287761 — 1, 0, 0, 2, 4, 0, 64,

1152 224832;1152, 224832;
• A287762 — 1, 0, 0, 48, 480, 0,

322560, 46448640,
8158703616081587036160.

OEIS sequences (ESODLS):
• A309210 — 1, 0, 0, 1, 1, 0, 5, 23;
• A309598 — 1, 0, 0, 2, 4, 0, 256,

4608;
• A309599 — 1, 0, 0, 48, 480, 0,

1290240, 185794560.
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How can one find ESODLS? CMS-based search.

Cells Mapping Scheme (CMS) — a mapping of a Latin square to another Latin 
square.

CMS of order N – a square table comprised of elements 0, …, N2 – 1.
CMS of order N – a permutation of size N2.

1 2 3 4 5 6 7 8 9

1 2 0 4 3 7 9 8 6 5

DLS A

17 97 67 57 47 37 7 87 27

71 11 91 61 51 41 31 1 81 21

CMS

6 8 1 9 0 4 3 7 5 20 77

DLS B

2 3 8 4 9 0 1 7 65

7 6 1 5 9 3 0 2 4 8

5 0 8 7 6 2 4 3 9 1

6 9 5 2 8 1 3 4 0 7

79 19 99 69 59 49 39 9 89 29

76 16 96 66 56 46 36 6 86 26

75 15 95 65 55 45 35 5 85 25

0 5 4 3 6 7 1 9 2 8

2 9 7 5 8 3 4 6 1 0

4 7 0 6 9 1 2 5 8 3

695 2813 4 07

6 952 8 1 34 0 7

69 28 13 4 07

74 14 94 64 54 44 34 4 84 24

73 13 93 63 53 43 33 3 83 23

70 90 60 50 40 30 0 80 20

1 3 2 7 5 8 6 4 0 9

8 4 9 0 1 2 7 3 6 5

9 1 8 2 3 6 5 4 705 10

69 5 28 1 34 07

6 9 528 13 40 7

78 18 98 68 58 48 38 8 88 28

72 12 92 62 52 42 32 2 82 22

7 6 5 1 2 0 9 8 3 4

3 0 6 4 7 5 8 2 9 1
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Loops structure for CMS

• CMS cells CMS[i1] -> CMS[i2] -> … -> CMS[iM] -> CMS[i1] form a loop of length 
M.

• Lengths of all CMS loops form a multiset L = {M }• Lengths of all CMS loops form a multiset L = {M, …}.
DLS A DLS B

ESODLS cCMS

Examples for order 10:
L {1:100} trivial;

ESODLS cCMS –
ESODLS CMS 4951

ESODLS cCMS –
ESODLS CMS 3407• L = {1:100} — trivial;

• L = {1:10, 2:45} —
canonical, all known ODLS;

L = {4:25} rare 1 CF• L = {4:25} — rare 1-CF 
loop-4 combinatorial 
structures;
• L = {1:10 3:30} — ???

DLS C DLS D

ESODLS cCMS –
ESODLS CMS 3407

ESODLS cCMS –
ESODLS CMS 4951

ESODLS cCMS –
ESODLS CMS 4951

ESODLS cCMS –
ESODLS CMS 3407

• L  {1:10, 3:30} ???

ESODLS cCMS –
ESODLS CMS 3407

ESODLS cCMS –
ESODLS CMS 4951
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First new result: classification of ESODLS CMS of small order

 For orders 1-9, full classification was built via depth-first search.
 The classification is based on multisets of cycle lengths, which correspond 

to the obtained set of MODLS.
List of multisets of cycle lengths for ESODLS CMS of order 4

List of multisets of cycle lengths for ESODLS CMS of order 5



Structures of MODLS
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Order 10: experiment in Gerasim@home

 There are 15360 ESODLS CMS of order 10 (easy to find).
 However, it is hard to find matching MODLS for all of them to complete 

the classification.
 For order 10, a series of short experiments was carried out in a volunteer 

computing project Gerasim@homecomputing project Gerasim@home. 
 As a result, cycles of MODLS of order 10, which match ESODLS CMS, 

were found. In turned out, that all of them have either length 2 or 4. 
 For some ESODLS CMS, it is time-consuming to find all matching MODLS 

via depth-first search.
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X-based diagonal fillings and ESODLS CMS

 In [1], X-based partial Latin squares of order 10 for ESODLS CMS 
were proposed. 

 First, all distinct partial Latin squares with known main diagonal are 
formed.

 Then all possible M-transformations are applied to them and the Then all possible M transformations are applied to them, and the 
obtained partial Latin squares are normalized by the main diagonal.

 As a result, in these X-based partial Latin squares, the main 
diagonal has al es 0 9 hile the main anti diagonal is alsodiagonal has values 0, . . . , 9, while the main anti-diagonal is also 
known, but it may have any values.

 Finally, lexicographically minimal representatives are chosen, and y, g p y p ,
each of them corresponds to an equivalence class. Such 
representatives are called strongly normalized DLSs. 

 There are 67 strongly normalized lines of DLSs of order 10 There are 67 strongly normalized lines of DLSs of order 10.

[1] Vatutin, E.I., Belyshev, A.D., Nikitina, N.N., O.Manzuk, M.: Use of X-based 
diagonal fillings and ESODLS CMS schemes for enumeration of main classes of g g
diagonal Latin squares (in Russian). Telecommunications 1(1), 2–16 (2023)



Second new result: searching for MODLS via SAT and ESODLS CMS

 For order 10, CMS 1234, 3407, 4951, and 5999 were considered (out of 
15360).

 For each of them a CNF was constructed that encodes searching for a pair 
of MODLS of order 10 that matches the CMS.

 Each of four CNF was divided into 67 CNFs by assigning X-based fillings in Each of four CNF was divided into 67 CNFs by assigning X based fillings in 
the first DLS.

 A sequential SAT solver Kissat was run on each of 268 CNFs on a 
tcomputer.

 All were solved – maximal runtime is 2 hours.
 For CMS 1234 3407 4951 all CNFs were unsatisfiable so it was proven For CMS 1234, 3407, 4951, all CNFs were unsatisfiable, so it was proven 

that there is no corresponding pair of MODLS.
 For CMS 5999, 1 CNF was satisfiable, and all 8 pairs of MODLS were found.
 Thus, for 4 CMS our of 15360 all matching MODLS were found on a 

computer.
 It is planned to process the remaining CMSs in a volunteer computing It is planned to process the remaining CMSs in a volunteer computing 

project.



One found pair of MODLS

Corresponding X-based filling:



Conclusions

• The present paper proposes a classification of cells mapping schemes 
based on extended self-orthogonal diagonal Latin squares. 

• For order 1-9, the classification is fully presented, while for order 10 it is 
partial.

• Some experiments for order 10 were held in a volunteer computingSome experiments for order 10 were held in a volunteer computing 
project.

• Preliminary results on finding MODLS of order 10 via SAT and ESODLS 
CMS are givenCMS are given. 

• Based on SAT results, it is planned to start a large-scale experiment in a 
volunteer computing project to complete the classification for order 10.
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Thank you for your attention!

Thanks to all the volunteers who took part in the 
Gerasim@home and RakeSearch projects!Gerasim@home and RakeSearch projects!

WWW htt // t ti d
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WWW: http://evatutin.narod.ru, 
https://rake.boincfast.ru/rakesearch/

E-mail: evatutin@rambler.ru


