
Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzuk M.O., Kochemazov S.E., Titov V.S.

Using grid systems for enumerating combinatorial objects on example of diagonal Latin
squares

One of important classes of combinatorial and discrete optimization problems [1] is

formed by enumeration problems. During their decision one needs to determine a number of
objects with specified properties. The simplest examples of such problems are well known
problems about chess rooks, chess queens, etc. For some of them precise analytic decisions are
known, while to solve others one needs to perform exhaustive search to enumerate the number of
decisions satisfying the specified constraints. For example, for chess rooks problem the number
of possible dispositions of N rooks on the board of size N×N matches the number of
permutations and is equal to N!. For some problems from the considered class the number of
decisions can be expressed using Stirling numbers (of the first and second kind), Bell numbers
[2], the number of combinations or partial permutations and so on. At the same time the precise
analytical formulas for the number of decisions for chess queens problem or the number of Latin
squares of order N are unknown (in the latter case there are known upper and lower bounds).

The number of decisions usually grows rapidly with the increase of the dimension of a
problem N, that is why when enumerating corresponding objects using brute force strategy one
has to develop highly effective program implementation that takes into account the features of
considered problem and provides high rate of generation of enumerated objects. From the point
of view of parallel programming the enumeration problems of such type are weakly coupled
problems, thus the algorithms for their solving can be implemented in the form of parallel
programs that are efficient within the context of parallel computing environments with various
architecture that comprise grid systems.

One of the combinatorial objects of considered type is diagonal Latin squares (DLS) that
are square tables of size N×N, where each cell is filled by an element of some alphabet (typically
a number from 0 to N–1) and in each row, each column and also in main and second diagonals
all elements are distinct. Basically, DLS are a special case of Latin squares (LS) that satisfy
additional diagonality constraints. Using simple transformations that do not violate any of the
constraints any DLS can be reduced to DLS in which the elements of the first row are sorted in
ascending order. The corresponding squares form an isomorphism class of size N!. The
dependence of number of LS on N is well known and presented by A000315 sequence in the
Online Encyclopedia of Integer Sequences (OEIS) [3], the dependence of the number of LS with
fixed first row has the number A000479. For DLS similar sequences are unknown and can be
calculated using brute force.

Native program implementation of this enumerating process is rather ineffective and has
the rate of generating squares of order 10 less than 1 DLS/s. In order to increase this rate and, as
a result, reduce computing time costs we introduced into the implementation the following
optimizations: altering the order of filling elements of DLS; using static data structures instead of
placing it in the dynamic memory; using information about the number of possible values ijS

for none filled cells of square combined with filling the cells with 1ijS = out of order and

avoiding unpromising branches of combinatorial tree with 0ijS = early; using auxiliary data

structures (one dimension arrays) for filling the set of allowed items ijS fast; switching off the

Hyper-Threading technology during single threaded generation of DLS combined with avoiding
background load on the CPU cores not used for generation; selecting the order of the filling cells
by criterion minijS to decrease the arity of nodes of combinatorial tree; using PGO

compilation. As a result it was possible to achieve the rate of generation of about 220 000 DLS/s
for recurrent single threaded CPU-oriented program implementation on Delphi language and
240 000 DLS/s for similar implementation on C language (processor Intel Core i7 4770). By

developing an alternative special iterative program implementation with 2N nested loops the
rate of generation was additionally increased to 790 000 DLS/s.

Thus the developed program implementation is almost 6 orders more effective compared
to native implementation, and this fact makes it possible to use it to enumerate some
combinatorial objects (for example, DLS and pairs of orthogonal DLS, also known as Graeco-
Latin squares). We applied it to enumerating DLS with fixed first row for several values of N.
The corresponding numerical sequence is as follows: 1, 0, 0, 2, 8, 128, 171200, 7447587840. The
total number of DLS can be calculated from the given sequence by multiplying its members by
the cardinality of corresponding isomorphism class that is equal to N!: 1, 0, 0, 48, 960, 92160,
862848000, 300286741708800. At this moment authors are preparing the computational
experiment aimed at organizing distributed enumeration of the number of DLS for cases with
greater values of N using grid systems organized on voluntary basis.

The research was partially supported by the state assignments for the Southwest State
University (2014–2017 years, no. 2246), by Russian Foundation for Basic Research (grants 14-
07-00403-a, 15-07-07891-a and 16-07-00155-a) and by Council for Grants of the President of
the Russian Federation (grants NSh-8081.2016.9, MK-9445.2016.8 and stipend SP-
1184.2015.5). We thank citerra [Russia team] for his help in development and implementing of
some algorithms.

Bibliography

1. Vatutin E.I., Titov V.S., Emelyanov S.G. Basics of discrete combinatorial optimization (in
Russian). M.: ARGAMAC-MEDIA, 2016. 270 p.
2. Vatutin E.I. Logic multicontrollers design. Getting separations of parallel graph-schemes of
algorithms (in Russian). Saarbrucken: Lambert Academic Publishing, 2011. 292 p.
3. https://oeis.org/A000315

