
1

HARDWARE ORIENTED CLASSIFICATION OF BINARY RELATIONS OF
GRAPH-SCHEMES OF PARALLEL ALGORITHMS

I.A. Martynov, E.I. Vatutin, V.S. Titov

305040, Kursk, Russia

Southwest State University, Department of Computer Sciences, 50 let Oktyabrya, 94
Phone: 8 (4712) 58-71-05

Abstract: The article describes the system of binary relations for graph-schemes of parallel algorithms, which
are a special type of graphs with some special properties. Given a generalized parallel algorithm for building a
matrix of binary relations based on private algorithms determine the connection, follow, alternative and
parallelism relations. It is shown that using of specialized storage devices with a matrix structure can achieve a
substantial gain in time during building the matrix of relations. In this case, the existing hardware with parallel
structure (eg, GPU) are characterized by lower gets the win in time.

Keywords: graph-schemes of parallel algorithms, matrix of relations, binary relations classification, hardware
accelerators design, logic multicontrollers design

In many problems associated with parallel representation and parallel processing of
information there are a need to work with graph-schemes of parallel algorithms presented as a
special kind of labeled graphs with some special properties [1, 2]. These include some
problems from parallelization of computations, parallel programming and homogeneous
multi-module systems design. It often requires the classification of binary relations between
vertices of processed graph-scheme that sufficiently conveniently put into practice with using
a matrix of relations RM [3, 4].

This data structure is a square matrix with elements ijm , , 1,i j N= , where N is a

number of vertices within graph-scheme. Each element of matrix is a set of binary relations
between pair of vertices ia и ja that stored as a bit vector [11]. This set of binary relations can

include follow relation n , connect relationj , parallelism relationw and alternative relationy
.Follow and connect relations can be used to determine the number and composition of links
set during separating source graph-scheme to blocks in order to determine control
dependencies and to calculate and minimize interconnect traffic control transfer and the
number of interconnect commands [5]. Parallelism relation is important to comply with
condition for the absence of parallel vertices consisting of one blocks of separation that is of
interest during design of homogeneous multi-module systems of logic control within logical
multi-controllers approach [1–3].

Follow relation has the property of transitivity (fig. 1) that allows for its transitive
closure based on source information formed by considering of all arcs of graph-scheme and
pairs of vertices incident to them [4].All another binary relations don’t have the property of
transitivity that illustrated at the fig. 2 at example of connect relation.

2

0a

1a

2a 3a

4a

5a 6a 7a

8a

9a

10a

11a
12a

13a

n

n

n

Figure 1.Example to explain the transitivity of the follow relation: 1 0 2 1 2 0,a a a a a an n  n

0a

1a

2a 3a

4a

5a 6a 7a

8a

9a

10a

11a
12a

13a

j
j

y

Figure 2. Example that shows none transitivity of connect relation: 0 5 0 6,a a a aj j , but ()5 6a a j , as 5 6a ay

The required transitive closure can be implemented using Floyd–Warshall algorithm

[6] that has time asymptotic complexity ()3O N . During processing of large graph-schemes

computing time can be up to 23% [7], therefor is of interest attempt to its decreasing. At
articles [8, 9] are presented estimates of gain in time for matrices multiplication problem with
various methods of algorithmic and high-level optimization (CPU cache using optimization,
GPU global memory using optimization, loops unrolling). The problem consider edisvery
similar to transitive closure problem which actually multiply Boolean matrices and resulting
gain in processing speed (performance) ranged from several times to several hundred times
depending on the hardware used and the composition of optimizations. Feature of the Floyd–
Warshall algorithm is a special order of the nested loops, which from one hand allows finding
desired transitive closure in one pass with three nested loops but on the other hand imposes

3

restrictions on the order of the sequential processing rows and columns of the matrix reducing
the degree of parallelism of processed data and as a result reducing then theoretical gain from
GPU using at least by N times negating usefulness of GPU in this problem. Instead, to
minimize the amount of time for transitive closure it is possible to develop special hardware
oriented accelerator based on using of special multi-port matrix memory [10] with structure
that shown at fig. 3. This approach can significantly speed up the processing.

[1, 1]

ra1y[1]

ra2y[1]

raKy[1]

way[1]

ra
1
x[
1
]

ra
2
x[
1
]

ra
K
x[
1
]

w
a
x[
1
]

wd[1]

Cw

rd1

rd2

rdK

ra1y[1]

ra2y[1]

raKy[1]

way[1]

ra
1
x[
2
]

ra
2
x[
2
]

ra
K
x[
2
]

w
a
x[
2
]

wd[1]

Cw

rd1

rd2

rdK

[3, 1]

ra1y[1]

ra2y[1]

raKy[1]

way[1]

ra
1
x[
3
]

ra
2
x[
3
]

ra
K
x[
3
]

w
a
x[
3
]

wd[1]

Cw

rd1

rd2

rdK

[1, 2]

ra1y[2]

ra2y[2]

raKy[2]

way[2]

ra
1
x[
1
]

ra
2
x[
1
]

ra
K
x[
1
]

w
a
x[
1
]

wd[2]

Cw

rd1

rd2

rdK

[2, 2]

ra1y[2]

ra2y[2]

raKy[2]

way[2]

ra
1
x[
2
]

ra
2
x[
2
]

ra
K
x[
2
]

w
a
x[
2
]

wd[2]

Cw

rd1

rd2

rdK

[3, 2]

ra1y[2]

ra2y[2]

raKy[2]

way[2]

ra
1
x[
3
]

ra
2
x[
3
]

ra
K
x[
3
]

w
a
x[
3
]

wd[2]

Cw

rd1

rd2

rdK

[1, 3]

ra1y[3]

ra2y[3]

raKy[3]

way[3]

ra
1
x[
1
]

ra
2
x[
1
]

ra
K
x[
1
]

w
a
x[
1
]

wd[3]

Cw

rd1

rd2

rdK

[2, 3]

ra1y[3]

ra2y[3]

raKy[3]

way[3]

ra
1
x[
2
]

ra
2
x[
2
]

ra
K
x[
2
]

w
a
x[
2
]

wd[3]

Cw

rd1

rd2

rdK

[3, 3]

ra1y[3]

ra2y[3]

raKy[3]

way[3]

ra
1
x[
3
]

ra
2
x[
3
]

ra
K
x[
3
]

w
a
x[
3
]

wd[3]

Cw

rd1

rd2

rdK

1

1

1

rd1

rd2

rdK

raKy

ra2y

ra1y

way

wax

raKx

ra2x

ra1x

wd

Cw

[2, 1]

Figure 3.Multi-port matrix memory device for bit signs storing

Connect relation can be obtained directly after follow relation determining using the

identity () ()i j i j j ia a a a a aj  n  n (in other words pair of vertices if connected by control

when one of them is accessible from another or visa versa). At the practice implementation
determining of connect relation can be partially aligned at time with the elucidation of follow
relation. Using discussed above matrix memory determining of connect relation can require
additional diagonal links between memory cells which symmetric with respect to main
diagonal that provide fast identifying of connect relation in constant time independent of
dimension N of the problem.

Clarification of the alternative relation started by finding pairs of alternative vertices
and vertices of combining alternative arcs corresponding to each other within current
alternative fragment of graph-scheme. After that builds the paths between selected pair of
vertices and adds desired alternative relation between vertices that make up different

4

alternative ways. Shown approach has some parallel operations, however, taking into account
a number of restrictions it is advisable to implement this operation on CPU passing at the
hardware level only result of classification of alternative relation. This can significantly
decrease complexity of hardware accelerator structure without departing of matrix
organization of memory and slightly increase the total time of processing. In this case,
alternative relation explanation can be aligned in time with elucidation of follow and connect
relations.

Parallel relations can be obtained immediately after the explanation of connect and
alternative relations using identity () ()i j i j i ja a a a a aw  j  y .With using matrix memory

this operation can be efficiently implemented by logical combining of cells that store
respective bit signs of relations as shown at fig. 4 without significant increasing of matrix
storage complexity.

D

C

TT

ϕij

D

C

TT

ψij

D

C

TT

ωij&

Figure 4. Circuit implementation of operation for determining the parallelism relation

Thus, as in case with connect relation, time complexity of operation do not depend

from dimension N of a problem.
Common parallel hardware oriented algorithm for classification of binary relations

based on shown above separate partial algorithms with its features presented at fig. 5.

5

ν'

ν ↓

φ

ν' ↑

ψ ↓

φ ↑

ω

ω ↑

Figure 5. Parallel hardware oriented algorithm for matrix of relations filling. Arrow down at IO operators

denotes data loading from RAM to matrix storage, arrow up – resulting data storing from matrix memory to
RAM. Operator vertices are private algorithms for determining of specific relation using hardware

accelerator

With its using can be implemented transfer of the time-consuming operations during

filling matrix of relations from program to hardware level that taking into account their
specific and provide significant decreasing of computing time.

REFERENCIES
1. Vatutin E.I., Zotov I.V., Titov V.S. et al. Combinatorial-logical problems of synthesis
separations of parallel logic control algorithms during logical multi-controllers design /
Kursk: KurskSTU, 2010. 200 p.
2. Vatutin E.I. Logical multi-controllers design. Getting separations of parallel graph-schemes
of algorithms. Saarbrucken: Lambert Academic Publishing, 2011. 292 p.
3. Organization and synthesis of micro program multimicrocontrollers / I.V. Zotov, V.A.
Koloskov, V.S. Titov et al. Kursk: Kursk, 1999. 368 p.
4. Vatutin E.I., Zotov I.V. Relation matrix building applied to the problem of optimal
separation of parallel logic control algorithms // Proceedings of Kursk State Technical
University. Kursk, 2004. № 2. pp. 85–89.
5. Vatutin E.I. The problem of interblock traffic estimation during getting separations of
parallel logic control algorithms // Education, Science, Production. Belgorod, 2006.
6. https://en.wikipedia.org/wiki/Floyd–Warshall_algorithm
7. Vatutin E.I. An analysis of bottlenecks of program implementation of parallel-sequential
method for getting separations of parallel algorithms // Optoelectronic devices in recognition

6

systems, image processing, and symbolic information processing (Recognition – 2013).
Kursk: Southwest State University, 2013. pp. 235–237.
8. Vatutin E.I., Martynov I.A., Titov V.S. The CPU real performance estimation for matrices
multiplication problem using single-threaded software implementation // Proceedings of
Southwest State University. Series: Control, Computer Sciences, Informatics, Medical
devices. 2013. № 4. pp. 11–20.
9. Vatutin E.I., Martynov I.A., Titov V.S.The GPU real performance estimation for matrices
multiplication problem using CUDA // Proceedings of Southwest State University. Series:
Control, Computer Sciences, Informatics, Medical devices. 2014. № 2. pp. 8–17.
10. Martynov I.A., Vatutin E.I., Titov V.S. Multi-port matrix memory device for bit signs
storing // Medical and Ecological Information Technology. Kursk, 2014. pp. 124–126.
11. Vatutin E.I. Optimizing of sets processing // Medical and Ecological Information
Technology. Kursk, 2005. pp. 145–147.

