Southwest State University Department of computer sciences

ENUMERATING CYCLIC AND PANDIAGONAL LATIN SQUARES, CORRESPONDING MAIN CLASSES AND THEIR PROPERTIES

Vatutin E.I.

What are Latin and diagonal Latin squares?

Why is it interesting?

Applied problems:

- experiment planning
- cryptography
- error correcting codes
- scheduling
- algebra, combinatorics, statistics, ...

Mathematical problems:

existence of a triple of MOLS/MODLS of order 10 (or larger clique)

- increasing world record of orthogonality characteristic for pseudo triple of MOLS (291/300) or MODLS (274/300)
- generating functions
- asymptotic behavior of combinatorial characteristics based on DLSs (OEIS)
- number theory (relations between different fields of knowledge)
- magic squares
- Sudoku (LS of order 9 with additional constraints)

Special types of LS/DLS

row[i] = cyclic_shift(row[i-1], d)

- there are known different special types of LS/DLS (plane symmetric, central symmetric, ...);
- all cyclic squares of small orders (N<13) are pandiagonal.

Integer sequences (OEIS): N queens problem example

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. ⁰¹³⁶²⁷ THE ON-LINE ENCYCLOPEDIA OE¹³ OF INTEGER SEQUENCES [®] founded in 1964 by N. J. A. Sloane Search Hints n queens (Greetings from The On-Line Encyclopedia of Integer Sequences!) Search: n queens Displaying 1-10 of 708 results found. page 1 2 3 4 5 6 7 8 9 10 ... 71 Sort: relevance | references | number | modified | created Format: long | short | data A000170 Number of ways of placing n nonattacking queens on an n X n board. (Formerly M1958 N0775) 1, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 2279184, 14772512, 95815104, 666090624, 4968057848, 39029188884, 314666222712, 2691008701644, 24233937684440, 227514171973736, 2207893435808352, 22317699616364044, 234907967154122528 (list; graph; refs; listen; history; edit; text; internal format) OFFSET 0,5 COMMENTS For n > 3, a(n) is the number of maximum independent vertex sets in the $n \ge n$ queen graph. - Eric W. Weisstein, Jun 20 2017 Number of nodes on level n of the backtrack tree for the n queens problem (a(n) =A319284(n, n)). - Peter Luschny, Sep 18 2018 REFERENCES M. Gardner, The Unexpected Hanging, pp. 190-2, Simon & Shuster NY 1969 Jieh Hsiang, Yuh-Pyng Shieh and Yao-Chiang Chen, The cyclic complete mappings counting problems, in Problems and Problem Sets for ATP, volume 02-10 of DIKU technical reports, G. Sutcliffe, J. Pelletier and C. Suttner, eds., 2002. D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018. Massimo Nocentini, "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation", PhD Thesis, University of Florence, 2019. See Ex. 67. W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed., New York, Dover, 1987, pp. 166-172 (The Eight Queens Problem). M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1926, p. 47. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. J. Walker, An enumerative technique for a class of combinatorial problems, pp. 91-94 of Proc. Sympos. Applied Math., vol. 10, Amer. Math. Soc., 1960. M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238. LINKS Table of n, a(n) for n=0..27. Jordan Bell, Brett Stevens, A survey of known results and research areas for ngueens, Discrete Mathematics, Volume 309, Issue 1, Jan 06 2009, Pages 1-31.

- D. Bill, Durango Bill's The N-Queens Problem
- J. R. Bitner and E. M. Reingold, <u>Backtrack programming techniques</u>, Commun. ACM, 18 (1975), 651-656.
- J. R. Bitner and E. M. Reingold, <u>Backtrack programming techniques</u>, Commun. ACM, 18 (1975), 651-656. [Annotated scanned copy]
- P. Capstick and K. McCann, <u>The problem of the n queens</u>, apparently unpublished, no date (circa 1990?) [Scanned copy]
- V. Chvatal, All solutions to the problem of eight queens

Integer sequences connected with transversals in DLS

- A287645 Minimum number of transversals in a diagonal Latin square of order N (N<10)
- $\underline{A287644}$ Maximum number of transversals in a diagonal Latin square of order N (N<10)
- <u>A287647</u> Minimum number of diagonal transversals in a diagonal Latin square of order N (N<9)

 $\underline{A287648}$ — Maximum number of diagonal transversals in a diagonal Latin square of order N (N<9)

Transversal 1

Transversal 2

Integer sequences connected with transversals in DLS: exactly known values

 $\begin{array}{l} \underline{A287645} - 1, 0, 0, 8, 3, 32, 7, 8, 68 \ (\text{N} < 10) \\ \underline{A287644} - 1, 0, 0, 8, 15, 32, 133, 384, 2241 \ (\text{N} < 10) \\ \underline{A287647} - 1, 0, 0, 4, 1, 2, 0, 0, 0 \ (\text{N} < 10) \\ \underline{A287648} - 1, 0, 0, 4, 5, 6, 27, 120, 333 \ (\text{N} < 10) \end{array}$

a(1)-a(8) — Brute Force for all DLS a(9) — CFs generator for main classes of DLS based on X-fillings of diagonals and ESODLS schemas (currently ongoing, ends)

What about a(10), a(11), ...?

Precise values are unknown, only upper and lower bounds are known.

$$0 \le X_{\min}^{LS}(N) \le X_{\min}^{DLS}(N) \le X_{\max}^{DLS}(N) \le X_{\max}^{LS}(N)$$

Integer sequences connected with transversals in DLS: unknown values for high orders

<u>A287645</u> - 1, 0, 0, 8, 3, 32, 7, 8, 68, \leq 408, \leq 2477, \leq 2240, \leq 78253, \leq 422312, \leq 2415635, \leq 14689972 (0 \leq a(n) \leq A287644(n) \leq A090741(n))

A287644 − 1, 0, 0, 8, 15, 32, 133, 384, 2241, \geq **5504**, \geq **37851**, \geq **198144**, \geq **1030367**, \geq **428296**, \geq **2991104**?, \geq **2429398**, \geq **3340285**?, \geq **14720910**, \geq **244744192**?, \geq **1606008513**, \geq **2167746304**?, \geq **87656896891**, \geq **697292390400**?, \geq **51162162017**?, \geq ?, \geq **452794797220965**, \geq ?, \geq **41609568918940625** (a(n) <= A090741(n))

<u>A287647</u> − 1, 0, 0, 4, 1, 2, 0, 0, 0, ≤15, ≤279, ≤74, ≤8795, ≤52484?, ≤?, ≤3994676, ≤204330233, ≤?, ≤11232045257 (a(n) <= A287648(n) <= A007016(n))

<u>A287648</u> − 1, 0, 0, 4, 5, 6, 27, 120, 333, ≥866, ≥4828, ≥30192, ≥131106, ≥380718, ≥389318, ≥32172800, ≥204995269, ≥280308432, ≥11254190082, ≥90010806304, ≥51162162017, ≥3227747329246 (a(n) <= A007016(n))

Upper and lower bounds can be expanded and strengthened!

Transversals in random Latin squares

```
A287645 (minimum number of transversals)
a(11) ≤ 3266->3255->3185->3175
a(12) \leq 15462
a(13) \leq 78253
a(14) \le 422312
a(15) \le 2415635
a(16) ≤ 14689972
...
A287644 (maximum number of transversals)
a(11) \ge 3867
a(12) \ge 16600
a(13) \ge 80999 (a(13) \ge 1030367 for cyclic squares)
a(14) \ge 428296
a(15) ≥ 2429398
a(16) ≥ 14720910
```

• • •

• 16 days on Core i7 4770 CPU, special program implementation of DLX (enumeration only without covers collecting)

• https://vk.com/wall162891802 1449

Diagonal transversals in random Latin squares

```
A287647 (minimum number of diagonal transversals)
a(11) \leq 324
a(12) \leq 1816
```

A287648 (maximum number of diagonal transversals) a(11) \geq 550 a(12) \geq 2200

...

...

• 16 days on Core i7 4770 CPU, special program implementation of DLX (enumeration only without covers collecting)

• https://vk.com/wall162891802 1449

Cyclic Latin squares: one of special types of LS

• 4 cyclic DLS, 6 cyclic LS for N=7

Number of transversals in cyclic Latin squares

1, 0, 3, 0, 15, 0, 133, 0, 2025, 0, 37851, 0, 1030367, 0, 36362925

or without zeroes:

1, 3, 15, 133, 2025, 37851, 1030367, 36362925

A006717 — Number of ways of arranging 2n+1 nonattacking semi-queens on a $(2n+1) \times (2n+1)$ toroidal board

Also the number of transversals of a cyclic Latin square of order 2n+1 and the number of orthomorphisms of the cyclic group of order 2n+1 (Ian Wanless, 2001).

Number of transversals are same for all cyclic LS of given order N

Number of transversals in cyclic Latin squares: consequence

A090741 (maximum number of transversals in LS):

 $a(11) \ge 37851$ $a(13) \ge 1030367$ $a(15) \ge 36362925$ $a(17) \ge 1606008513$ $a(19) \ge 87656896891$ $a(21) \ge 5778121715415$ $a(23) \ge 452794797220965$ $a(25) \ge 41609568918940625$

• • •

Lower bounds can be added to sequence A090741 in OEIS...

Number of transversals are same for all cyclic LS of given order N

Number of transversals in cyclic diagonal Latin squares: consequence

 $a(11) \ge 37851$ $a(13) \ge 1030367$ cyclic DLS are not exists for N=15 $a(17) \ge 1606008513$ $a(19) \ge 87656896891$ cyclic DLS are not exists for N=21 $a(23) \ge 452794797220965$ $a(25) \ge 41609568918940625$

Lower bounds can be added to sequence A287644 in OEIS...

exists not for all orders N

Number of diagonal transversals in cyclic diagonal Latin squares

Minimal number of diagonal transversals in cyclic DLS of order N=2n+1: <u>1, 0, 5, 27,</u> <u>0, 4523, 128818, 0, 204330233, 11232045257</u> (not presented in OEIS, added as <u>A342998</u>)

Maximal number of diagonal transversals in cyclic DLS of order N=2n+1 : <u>1, 0, 5,</u> <u>27, 0, 4665, 131106, 0, 204995269, 11254190082</u> (not presented in OEIS, added as <u>A342997</u>)

Corresponding upper and lower bounds can be added to A287647 (weak) and A287648...

Enumerating the cyclic (diagonal) Latin squares

<u>DLS:</u>

1, 0, 0, 0, 2, 0, 4, 0, 0, 0, 8, 0, 10, 0, 0, 0, 14, 0, 16, 0, 0, 0, 20, 0, 10, 0, 0, 0, 26, 0, 28, ...

Squares of this special type exists not for all orders N.

The number of positive integers k which are \leq n and where k, k-1 and k+1 are each coprime to n (well known numerical series that directly not connected with Latin squares!).

<u>LS:</u>

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, ...

Euler totient function phi(N)!!! Not connected directly with Latin squares! Can be calculated through Latin squares...

Euler totient function calculating

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_m^{\alpha_m}$$
$$\varphi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_m} \right)$$

$$6 = 2^1 \cdot 3^1, \varphi(6) = 6 \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) = 2$$

- calculating by definition (enumerating coprimes (k,n), k<n, Euclid algorithm)
- calculating using factoring and formula
- new method: calculating by enumerating cyclic Latin squares of order n

Euler totient function calculating by enumerating cyclic Latin squares

0																			
	1	2	3	4	5	0	1	2	3	4	5		0	1	2	3	4	5	
0	1	2	3	4	5	1	2	3	4	5	0		2	3	4	5	0	1	
0	1	2	3	4	5	2	3	4	5	0	1		4	5	0	1	2	3	
0	1	2	3	4	5	3	4	5	0	1	2		0	1	2	3	4	5	
0	1	2	3	4	5	4	5		1	2	3		2	3	4	5	0	1	
0	1	2	3	4	5	5		1	2	3	4		4	5	0	1	2	3	(6) - 2
												」							$\frac{1}{2} \Psi(0) - 2$
0	1	2	3	4	5	0	1	2	3	4	5			1	2	3	4	5	
2	4																		
		5	0	1	2	4	5	0	1	2	3		5	0	1	2	3	4	
0	1	2	0 3	1 4	2 5	4	5 3	0 4	1 5	2 0	3 1		5 4	0 5	1 0	2	3 2	4 3	
0	1	5 2 5	0 3 0	1 4 1	2 5 2	4 2 0	5 3 1	0 4 2	1 5 3	2 0 4	3 1 5		5 4 3	0 5 4	1 0 5	2 1 0	3 2 1	4 3 2	
0 3 0	1 4 1	5 2 5 2	0 3 0 3	1 4 1 4	2 5 2 5	4 2 0 4	5 3 1 5	0 4 2 0	1 5 3 1	2 0 4 2	3 1 5 3		5 4 3 2	0 5 4 3	1 0 5 4	2 1 0 5	3 2 1 0	4 3 2 1	

polynomial algorithm (t~O(N²), m~O(N)) without multiplications and divisions

Euler totient function OEIS description slightly expanded

	phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p											
	Gary Detlets, Apr 21 2012 For odd n. a(n) - 2*A135103((n-1)/2)*A003558((n-1)/2) or phi(n) - 2*c*k: the Coach											
	theorem of Pedersen et al. Cf. <u>A135303</u> <u>Gary W. Adamson</u> , Aug 15 2012											
	G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = <u>A008683(n)</u> <u>Mamuka</u> Jibladze, Apr 05 2015											
	a(n) = n - cototient(n) = n - <u>A051953(</u> n) <u>Omar E. Pol</u> , May 14 2016											
	a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} <u>A008683</u> (d)/(e^(1/d))^(s-1)), for n > 1 Mats Granvik, lan 26 2017											
	Conjecture: $a(n) = Sum \{a=1,n\}$ Sum $\{b=1,n\}$ Sum $\{c=1,n\}$ 1 for $n > 1$. The sum is											
	over a,b,c such that n*c - a*b = 1 <u>Benedict W. J. Irwin</u> , Apr 03 2017											
	<pre>a(n) = Sum_{j=1} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum</pre>											
	<pre>c_n(k) := Sum_{j=1n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k n} k*c (n/k)(1) = Sum_{k n} k*mu(n/k) Michael Somos. May 13 2018</pre>											
	G.f.: $x^*d/x(x^*d/dx(\log(\operatorname{Product}[k)-1])(1 x^k)^{(mu(k)/k^2)}))$, where $mu(n) = 4008682(n) = 40mk^2 1kladze San 20 2018$											
	a(n) = Sum {d n} A007431(d) Steven Foster Clark, May 29 2019											
	G.f. A(x) satisfies: A(x) = $x/(1 - x)^2 - Sum_{k>=2} A(x^k)$ <u>Ilya Gutkovskiy</u> , Sep 06 2019											
	a(n) >= sqrt(n/2) (Nicolas) <u>Hugo Pfoertner</u> , Jun 01 2020											
	a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld) <u>Hugo Pfoertner</u> , Jun 02 2020											
EXAMPLE	$G.f. = x + x^2 + 2^*x^3 + 2^*x^4 + 4^*x^5 + 2^*x^6 + 6^*x^7 + 4^*x^8 + 6^*x^9 + 4^*x^{10} + 4^*x^$											
	a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10 Michael Somos, Aug 27 2013											
	From <u>Eduard I. <mark>Vatu</mark>tin</u> , Nov 01 2020: (Start)											
	The a(5)=4 cyclic Latin squares with the first row in ascending order are:											
	01234 01234 01234 01234											
	23401 40123 12340 34012											
	3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1											
	40123 34012 23401 12340											
	(End)											
MAPLE	<pre>with(numtheory): <u>A000010</u> := phi; [seq(phi(n), n=1100)]; # version 1 with(numtheory): phi := proc(n) local i, t1, t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]), i=1nops(t1)); end; # version 2</pre>											
MATHEMATICA	Array[EulerPhi, 70]											
PROG	(Axiom) [eulerPhi(n) for n in 1100]											
	<pre>(MAGMA) [EulerPhi(n) : n in [1100]]; // Sergei Haller (sergei(AT)sergei- haller.de), Dec 21 2006</pre>											
	(PARI) {a(n) = if(n==0, 0, eulerphi(n))}; /* <u>Michael Somos</u> , Feb 05 2011 */ (Sage)											
	# euler phi is a standard function in Sage.											
	def <u>A000010(</u> n): return euler_phi(n)											
	def <u>A000010</u> list(n): return [euler_phi(i) for i in range(1, n+1)] # Jaap Spies, Jan 07 2007											
	(PARI) { for (n=1, 100000, write("b000010.txt", n, " ", eulerphi(n))); } \\ <u>Harry</u> <u>J. Smith</u> , Apr 26 2009											
	(Sage) [euler_phi(n) for n in range(1, 70)] # <u>Zerinvary Lajos</u> , Jun 06 2009											
	<pre>(Maxima) makelist(totient(n), n, 0, 1000); /* Emanuele Munarini, Mar 26 2011 */ (Haskell) a n = length (filter (==1) (nap (gcd n) [1n])) Allan C. Wechsler, Dec 29 2014</pre>											
	(Python)											
	from sympy.ntheory import totient											
	print([totient(i) for i in range(1, 70)]) # <u>Indranil Ghosh</u> , Mar 17 2017											
CROSSREFS	Cf. <u>A008683</u> , <u>A003434</u> (steps to reach 1), <u>A007755</u> , <u>A049108</u> , <u>A002202</u> (values). Cf. <u>A005277</u> (nontotient numbers). For inverse see <u>A002181</u> , <u>A006511</u> , <u>A058277</u> . Jordan function J_k(n) is a generalization - see <u>A059379</u> and <u>A059380</u> (triangle of											
	values of $\frac{1}{2} k(n)$ this sequence (1.1) A007434 (1.2) A050375 (1.3) A050377											

Euler totient function calculating by enumerating cyclic Latin squares: practice implementation

С:\Projects\Функция	Эйлера\EulerTotier	ntFunction.exe				x
1 - factorization 2 - Euclid 3 - cyclic Latin 4 - cyclic Latin 5 - cyclic Latin) squares squares with squares with	O find O find, half	of d valu	ies		
N v1 v2	v3 v4	v5 t1	t2 t3	t4	t5	=
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1754\\ 163\\ 2475\\ 883\\ 916\\ 1472\\ 91638\\ 15002\\ 1978\\ 323049\\ 191638\\ 15002\\ 191638\\ 15002\\ 191638\\ 1002\\ 191638\\ 1002\\ 191638\\ 1002\\ 191638\\ 1002\\ 191638\\ 1002\\ 191638\\ 1002\\ 191638\\ 1002\\ 10$	$\begin{array}{c} 287\\ 75\\ 311\\ 266\\ 75\\ 308\\ 308\\ 5447\\ 7701\\ 11908\\ 547\\ 7701\\ 11908\\ 537\\ 7701\\ 1175\\ 72248\\ 7705\\ 122248\\ 7705\\ 12705\\ 22705\\ 22705\\ 224412\\ 50842\\ 43862\\ 6273\\ 84366\\ 520929\\ 2443\\ 32866\\ 439562\\ 54929\\ 2553\\ 9553\\ 85553\\ 9553\\ 85553\\ 9553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855553\\ 855555\\ 855555\\ 855555\\ 855555\\ 855555\\ 855555\\ 85555\\ 855555\\ 855555\\ 855555\\ 855555\\ 855555\\ 855555\\ 855555\\ 855555\\ 8555$	

- slower than factorization based calculating
- slower than long arithmetic implementation (extimation)

Euler totient function calculating by enumerating cyclic Latin squares and main classes (is it possible?)

Pandiagonal LS of order N (added to OEIS as A339999):

1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0

Cyclic DLS of order N=2k+1 (added to OEIS as A341585):

1, 0, 1, 1, 0, 2, 3, 0, 4, 4, 0, 5

 $N \le 13$ — less than 1 second N=17 — 1 minute (Core i7 4770, 1 thread) N=19 — 1 hours 7 minutes N=23 — 413 hours (2+ days on Core i7 4770, 8 threads)

 $N \ge 25$ — parallel computing system required

Cyclic and pandiagonal properties of LS/DLS are not equivalent for rows and columns permuting. Is enumerating based on main classes possible? Open question...

Brief conclusion

- new numerical series was calculated
- new upper and lower bounds for some series was established
- interconnections between Latin squares and different type combinatorial objects was established
- new method of Euler totient function calculating based on Latin squares was proposed

Related work

Collecting CFs and new combinatorial structures search:

- triple of MODLS (is it exist?)
- different structures?

GPU implementation of transversal, cover and ESODLS algorithms?

Enumeration problems (OEIS):

- expanding current sequences
- enumerating DLS and ODLS of special kind (string-inverse, symmetric, ...) and its CFs

Pseudo triples:

• 3 kinds of pseudo triples, only 1 was investigated in details

Thank you for your attention!

Thanks to all the volunteers who took part in the Gerasim@home project!

WWW: <u>http://evatutin.narod.ru</u>, <u>http://gerasim.boinc.ru</u> E-mail: <u>evatutin@rambler.ru</u> LJ: <u>http://evatutin.livejournal.com</u> Skype: evatutin

