Э.И. Ватутин, И.В. Зотов

ПОСТРОЕНИЕ МАТРИЦЫ ОТНОШЕНИЙ В ЗАДАЧЕ ОПТИМАЛЬНОГО РАЗБИЕНИЯ ПАРАЛЛЕЛЬНЫХ УПРАВЛЯЮЩИХ АЛГОРИТМОВ

Рассмотрены особенности реализации этапа построения матрицы отношений параллельного управляющего ациклического алгоритма в рамках параллельно-последовательного метода формирования субоптимальных разбиений. Приведен алгоритм нахождения матрицы отношений. Даются примеры построения матрицы отношений.

E.I. Vatutin, I.V. Zotov

BUILDING A RELATION MATRIX IN THE OPTIMAL SEPARATION OF PARALLEL CONTROL ALGORITHMS

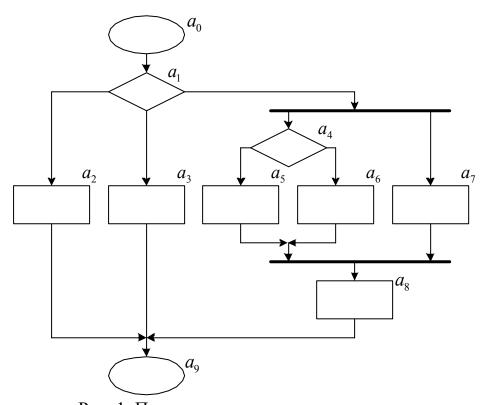
Some aspects of construction of a relation matrix for a parallel control acyclic control algorithm, a phase of the parallel-sequential suboptimal separation method, are under consideration. An algorithm for building a relation matrix is given. Examples of building a relation matrix are presented.

В статье рассматривается один из этапов параллельно-последовательного метода формирования субоптимальных разбиений [1] в качестве решения задачи декомпозиции параллельного управляющего алгоритма на последовательные подалгоритмы (блоки) при проектировании систем логического управления (СЛУ) на базе микроконтроллерных сетей. Наиболее значимыми отличительными особенностями рассматриваемого метода являются: параллельное построение подалгоритмов; учет технологических ограничений элементной базы (СБИС микроконтроллеров) — количества выводов на корпусе микросхемы, емкости участка памяти микропрограмм; минимизация сложности сети связей и интенсивности межконтроллерного взаимодействия. Метод включает в себя следующие этапы: проведение эквивалентных преобразований с целью получения ациклического алгоритма минимальной размерности, построение множества сечений [2, 3], непосредственно синтез блоков разбиения. При обработке исходный алгоритм представляется в виде графа $G = \langle A, U \rangle$, который является взвешенным и ориентированным.

реализации При некоторых сечений этапов (поиск множества ациклического алгоритма, построения блоков разбиения) возникает необходимость в классификации отношений между вершинами. В рамках используемого метода рассматриваются следующие отношения:

- Следования (v). Вершина a_i следует за вершиной a_j (a_j v a_i), если в графе существует путь $L = \left\{a_i, a_{k_1}, a_{k_2}, ..., a_{k_n}, a_j\right\}$, соединяющий вершины.
- Связи (ф). Вершины a_i и a_j находятся в отношении связи $(a_j \phi a_i)$, если в графе существует маршрут $P = \left\{a_i, a_{k_1}, a_{k_2}, ..., a_{k_n}, a_j\right\}$, соединяющий вершины.
- Параллельности (ω). Вершины a_i и a_j параллельны ($a_j \omega a_i$), если они входят в состав различных параллельных ветвей алгоритма.
- Альтернативы (ψ). Вершины a_i и a_j находятся в отношении альтернативы $(a_j \psi a_i)$, если они принадлежат к разным ветвям одного и того же альтернативного ветвления.

В качестве примера, иллюстрирующего распределение отношений, рассмотрим алгоритм на рис. 1.



Отношения между вершинами: $a_8 v a_0 \ a_2 v a_1 \ a_9 v a_4 \ a_5 \phi a_1 \ a_1 \phi a_6 \ a_3 \phi a_9 \ a_5 \omega a_7 \ a_7 \omega a_4 \ a_5 \psi a_6 \ a_3 \psi a_7 \ a_2 \psi a_6 \ (показана только часть отношений)$

Рис. 1. Пример параллельного алгоритма

Наиболее полную картину распределения отношений дает структура данных, получившая название матрицы отношений. Она представляет собой квадратную матрицу M размерности $N \times N$ (N — количество вершин алгоритма), элементами m_{ij} которой являются отношения между вершинами a_i и a_j . Для приведенного примера алгоритма (рис. 1) матрица отношений имеет вид:

$$M = \begin{pmatrix} - & \phi \\ v,\phi & - & \phi \\ v,\phi & v,\phi & - & \psi & \psi & \psi & \psi & \psi & \psi & \phi \\ v,\phi & v,\phi & \psi & - & \psi & \psi & \psi & \psi & \phi \\ v,\phi & v,\phi & \psi & \psi & - & \phi & \phi & \phi & \phi \\ v,\phi & v,\phi & \psi & \psi & v,\phi & - & \psi & \phi & \phi \\ v,\phi & v,\phi & \psi & \psi & v,\phi & \psi & - & \phi & \phi \\ v,\phi & v,\phi & \psi & \psi & v,\phi & \psi & - & \phi & \phi \\ v,\phi & v,\phi & \psi & \psi & v,\phi & v,\phi & v,\phi & - & \phi \\ v,\phi & v,\phi & \psi & \psi & v,\phi & v,\phi & v,\phi & v,\phi & - & \phi \\ v,\phi & - & \phi \end{pmatrix}.$$

Особенностью матрицы отношений является ее симметричность относительно главной диагонали при рассмотрении отношений φ, ψ, ω и асимметричность для отношения ν , что объясняется свойством симметричности отношений связи, параллельности и альтеративы и несимметричностью отношения следования. Элементы матрицы отношений, содержащие отношение следования ν , не обязательно располагаются ниже главной диагонали.

Использование матрицы отношений способствует устранению неоднозначностей при проведении $p \rightarrow a$ -перегруппировок [3] на этапе перебора сечений алгоритма, а также позволяет вести учет архитектурных ограничений на отсутствие в составе одного и того же блока параллельно выполняемых вершин.

Алгоритм построения матрицы отношений заключается в последовательном выяснении отношений в следующем порядке: отношение следования ν , отношение связи ϕ , отношение альтернативы ψ , отношение параллельности ω . Рассмотрим выяснение отношений более подробно.

Отношение следования v. Выяснение отношения следования основано на его транзитивности: если $a_i v a_j$ и $a_j v a_k$, то $a_i v a_k$. В качестве начальных значений матрицы задаются отношения между вершинами, непосредственно соединенными дугой. После этого в матрице осуществляется поиск элементов m_{ij} , m_{jk} и m_{ik} , таких что

$$v \in m_{ij}, \ v \in m_{jk}, \ v \notin m_{ik}, \tag{1}$$

и производится включение отношения ν в множество отношений элемента m_{ik} . Процесс поиска и включения продолжается до тех пор, пока возможно нахождение элементов, соответствующих (1).

Отношение связи ϕ . Вершины a_i и a_j находятся в отношении связи, если $a_i v a_j$ или $a_j v a_i$. Выяснение отношения сводится к поиску в матрице элемента m_{ij} , такого что $v \in m_{ij}$, и включению отношения ϕ в состав элементов m_{ij} и m_{ji} .

Отношение альтернативы ψ . Выяснение отношения альтернативы сводится к поиску альтернативных ветвлений A_i^{ψ} , выделению альтернативных ветвей ветвлений $W_j \in A_i^{\psi}$ и заданию отношения альтернативы для вершин, входящих в состав различных ветвей в рамках одного ветвления: если $a_{k_1} \in W_{j_1}$, $a_{k_2} \in W_{j_2}$, причем $W_{j_1} \in A_i^{\psi}$ и $W_{j_2} \in A_i^{\psi}$, то $a_{k_1} \psi a_{k_2}$. Для однозначного определения окончания альтернативного ветвления в алгоритм должны быть введены фиктивные вершины, получившие название вершин объединения альтернативных дуг (по аналогии с парами вершин распараллеливания/синхронизации). Возможные варианты взаимного расположения условных вершин и вершин объединения альтернативных дуг приведены на рис. 2.

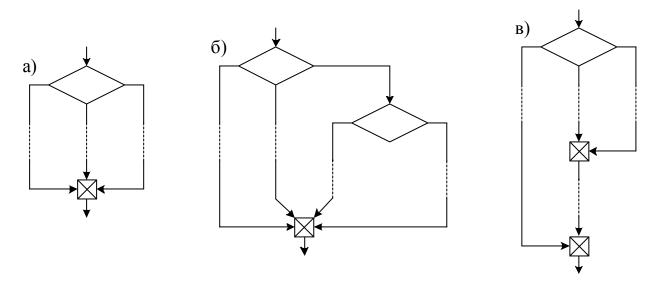


Рис. 2. Типы альтернативных ветвлений

Возможны также произвольные комбинации вложения альтернативных ветвлений различных типов друг в друга.

Для пояснения алгоритма введем следующие обозначения:

 \tilde{S} — множество разрешенных вершин объединения альтернативных дуг;

S – множество текущих вершин объединения альтернативных дуг;

W — массив альтернативных ветвей (W_i — множество вершин, входящих в состав одной из ветвей, $i=\overline{1,N}$);

L — массив окончаний альтернативных ветвей (L_i — множество вершин, которыми на данный момент завершается i-ая ветвь, $i=\overline{1,N}$). Алгоритм.

1. (инициализация) Положить $\tilde{S}=\varnothing$, $S=\varnothing$. Выбрать альтернативную вершину $a_{\rm alt}$.

- 2. Определить количество альтернативных путей N, исходящих из вершины $a_{\rm alt}$. Зарезервировать для них места в W, включив в качестве начальных значений вершины a_k , следующие непосредственно за $a_{\rm alt}$, в множества W_i . Внести вершины a_k в L_i , $i=\overline{1,N}$.
- 3. Для всех множеств L_i сформировать множества \overline{L}_i вершин, следующих непосредственно за вершинами $a_k \in L_i$. Если L_i целиком состоит из вершин объединения альтернативных дуг, то положить $\overline{L}_i = L_i$. Положить $W_i = W_i \cup \overline{L}_i$, $L_i = \overline{L}_i$, $i = \overline{1,N}$. Сформировать множество S из вершин объединения альтернативных дуг $a_i \in L_j$. Продолжать формирование множеств \overline{L}_i до тех пор, пока они целиком не будут состоять из запрещенных вершин объединения альтернативных дуг: $a_l \in S$, $a_l \notin \widetilde{S}$. Если количество различных вершин объединения альтернативных дуг |S|=1, то перейти к п. 5.
- 4. Включить в состав разрешенных вершин объединения альтернативных дуг \tilde{S} такие вершины $a_k \in \overline{L}_i$, для которых найдется вершина $a_l \in \overline{L}_j$, причем $a_l \vee a_k$. Перейти к п. 3.
- 5. Для всех пар вершин $a_i \in W_j$ и $a_k \in W_l$, $j \neq l$, $\phi \notin m_{ik}$ включить отношение ψ в состав m_{ik} и m_{ki} .
- 6. Выбрать следующую нерассмотренную альтернативную вершину $a_{\rm alt}$. Если рассмотрены все альтернативные вершины, конец, иначе перейти к п. 3.

Отношение параллельности ω . Отношения φ , ψ , ω образуют универсальное отношение $\varphi \cup \psi \cup \omega = A \times A$, причем $\varphi \cap \psi = \emptyset$ и $\psi \cap \omega = \emptyset$, откуда $a_i \omega a_j \Leftrightarrow \neg \left(a_i \varphi a_j\right) \& \neg \left(a_i \psi a_j\right)$ [1]. Т.е. для определения отношения ω необходимо найти такие элементы m_{ij} матрицы отношений, для которых $\varphi \notin m_{ij}$, $\psi \notin m_{ij}$, и положить $m_{ij} = \omega$.

Определение отношений следования, связи и параллельности не представляет особой сложности. Рассмотрим более подробно алгоритм выяснения отношения альтернативы на примере (рис. 3).

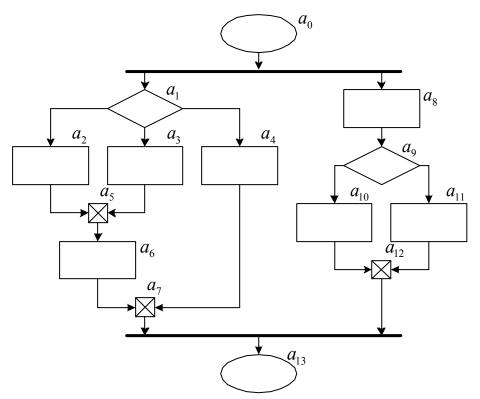


Рис. 3. Пример параллельного алгоритма

Выбираем альтернативную вершину:

$$a_{\text{alt}} = a_1, \ \tilde{S} = \emptyset, \ S = \emptyset.$$

Определяем количество альтернативных путей, исходящих из вершины $a_{\rm alt}$:

$$N=3$$
.

Задаем начальные значения множеств W_i и L_i :

$$W_1 = \{a_2\}, W_2 = \{a_3\}, W_3 = \{a_4\};$$

 $L_1 = \{a_2\}, L_2 = \{a_3\}, L_3 = \{a_4\}.$

Формируем множества \overline{L}_i :

$$\overline{L}_1 = \{a_5\}, \ \overline{L}_2 = \{a_5\}, \ \overline{L}_3 = \{a_7\}.$$

Изменяем множества W_i и L_i :

$$\begin{split} W_1 &= \left\{ a_2, a_5 \right\}, \ W_2 &= \left\{ a_3, a_5 \right\}, \ W_3 &= \left\{ a_4, a_7 \right\}; \\ L_1 &= \left\{ a_5 \right\}, \ L_2 &= \left\{ a_5 \right\}, \ L_3 &= \left\{ a_7 \right\}. \end{split}$$

Множества L_i целиком состоят из запрещенных вершин объединения альтернативных дуг:

$$S = \{a_5, a_7\}, |S| = 2.$$

Сформируем множество \tilde{S} :

$$\tilde{S} = \{a_5\} \ (a_7 \vee a_5).$$

Сформируем множества \overline{L}_i :

$$\overline{L}_1 = \{a_6\}, \ \overline{L}_2 = \{a_6\}, \ \overline{L}_3 = \{a_7\}.$$

Изменяем множества W_i и L_i :

$$W_1 = \{a_2, a_5, a_6\}, W_2 = \{a_3, a_5, a_6\}, W_3 = \{a_4, a_7\};$$

$$L_1 = \{a_6\}, L_2 = \{a_6\}, L_3 = \{a_7\}.$$

Множества L_i включают вершину $\{a_6\}$, не являющуюся запрещенной вершиной объединения альтернативных дуг, поэтому сформируем множества \overline{L}_i :

$$\overline{L}_1 = \{a_7\}, \ \overline{L}_2 = \{a_7\}, \ \overline{L}_3 = \{a_7\}.$$

Изменяем множества W_i и L_i :

$$W_1 = \{a_2, a_5, a_6, a_7\}, W_2 = \{a_3, a_5, a_6, a_7\}, W_3 = \{a_4, a_7\}; L_1 = \{a_7\}, L_2 = \{a_7\}, L_3 = \{a_7\}.$$

Множества L_i целиком состоят из запрещенных вершин объединения альтернативных дуг:

$$S = \{a_7\}, |S| = 1.$$

Определяем отношения альтернативы для сформированных путей W_i :

$$W_1$$
 и $W_2 - a_2 \psi a_3$;
 W_1 и $W_3 - a_2 \psi a_4$, $a_5 \psi a_4$, $a_6 \psi a_4$;
 W_2 и $W_3 - a_3 \psi a_4$, $a_5 \psi a_4$, $a_6 \psi a_4$.

Выбираем следующую альтернативную вершину:

$$a_{\text{alt}} = a_9$$
, $\tilde{S} = \emptyset$, $S = \emptyset$.

Определяем количество альтернативных путей, исходящих из вершины $a_{\rm alt}$:

$$N=2$$
.

Задаем начальные значения множеств W_i и L_i :

$$W_1 = \{a_{10}\}, W_2 = \{a_{11}\};$$

 $L_1 = \{a_{10}\}, L_2 = \{a_{11}\}.$

Формируем множества \overline{L}_i :

$$\overline{L}_1 = \{a_{12}\}, \ \overline{L}_2 = \{a_{12}\}.$$

Изменяем множества W_i и L_i :

$$W_1 = \{a_{10}, a_{12}\}, W_2 = \{a_{11}, a_{12}\};$$

 $L_1 = \{a_{12}\}, L_2 = \{a_{12}\}.$

Множества L_i целиком состоят из запрещенных вершин объединения альтернативных дуг:

$$S = \{a_{12}\}, |S| = 1.$$

Определяем отношения альтернативы для сформированных путей W_i :

$$W_1$$
 и $W_2 - a_{10} \psi a_{11}$.

Рассмотрены все альтернативные вершины, конец алгоритма.

Рассмотренный способ построения матрицы отношений, характеризующийся $O(n^3)$ сложностью, обеспечивает корректное построение матрицы отношений для корректных ациклических алгоритмов [1].

Работа выполнена при финансовой поддержке гранта Минобразования "Столетовские гранты — 2003".

Библиографический список

- 1. Зотов И.В., Колосков В.А., Титов В.С., Сапронов К.А., Волков А.П. Организация и синтез микропрограммных мультимикроконтроллеров. Курск: ГУИПП "Курск", 1999. 368 с.
- 2. Поиск базового сечения в задаче разбиения параллельных алгоритмов / Ватутин Э.И., Зотов И.В.; КГТУ. Курск, 2003. 30 с. Рус. деп. в ВИНИТИ 24.11.03 № 2036-В2003.
- 3. Ватутин Э.И., Зотов И.В., Титов В.С. Построение множества сечений в задаче оптимального разбиения параллельных управляющих алгоритмов // Известия ТулГУ. Вычислительная техника. Информационные технологии. Системы управления. Тула: ТулГУ, 2003. Т. 1. Вып. 2. С. 70–77.