
CONSTRUCTING RANDOM SAMPLE
PARALLEL LOGIC CONTROL ALGORITHMS

Eduard I. Vatutin

Department of Computer Science
Kursk State Technical University

50 Let Oktyabrya, 94, 305040, RUSSIA
Tel: +7(4712) 56-43-13, E-mail: evatutin@rambler.ru

 Abstract — Description of an algorithm that allows to automatically generate and visualize sample random logic
control algorithms with preset parameters is given. Examples of generated algorithms are presented.

1. INTRODUCTION

 One of the promising approaches to the design of parallel logic control systems is based upon microcontroller
network concept [1]. In the synthesis of such systems, there is a number of problems waiting for a solution. One of
them is the optimal separation of parallel logic control algorithms into a set of concurrent sequential subalgorithms
(called blocks) according to some functional and structural restrictions. The problem is known to be an NP-hard one
and can’t be solved precisely for algorithms with more then ~15 vertices (estimate) because of excessive time
growth. Practical logic control algorithms are much more complicated (say ~100 vertices). To solve the given
problem, a number of heuristic algorithms (for example, [2, 3]) have been proposed, one of them has been developed
by the authors [4]. While constructing a separation, the considered methods use various heuristic techniques,
therefore, it is important to compare these methods to each other to select the best of them according to the specified
criterion. For this purpose, a considerable set of initial data samples (in this case – logic control algorithms) is
required. The number of available practical examples of parallel control algorithms as well as the number of
algorithms which can be thought up within a limited time interval is essentially limited and pear comparison of
methods can’t be attained, therefore we need automatic generation of sample parallel logic control algorithms with
preset general parameters. Note that comparison results received on sample random algorithms should be checked up
for known real examples of parallel control algorithms.

2. REPRESENTATION OF ALGORITHMS USING A FRAGMENT TREE

 In the structure of any correct parallel logic control algorithm, it is possible to point out a set of typical fragments:
• begin fragment (BE);
• linear way (LW);
• alternative branching (ALT);
• parallel fragment (PAR);
• different types of loops – loops with pre- and post-conditions, loops with breaking (LB, LA, LM).
(Within the considered approach, parallel alternatives and parallel loops are not examined (don’t participate in
generation), since it is possible to replace them with consecutive fragments in combination with a parallel fragment
as shown in fig.1)

Fig. 1. Replacement of parallel alternative fragment

Any algorithm (it is possible, with minor transformations, which do not vary the order of operator execution) usually
figured as a graph consisting of vertices and arcs can be represented as a tree of the above listed fragments (fig. 2).

Fig. 2. Representation of an algorithm as a fragment tree

3. SYNTESIS OF SAMPLE RANDOM PARALLEL LOGIC CONTROL ALGORITHMS

 In the light of the opportunity to represent a logic control algorithm as a fragment tree, the proposed method of
random generation can be presented in two stages:

1. Constructing a fragment tree downward (from root to leaves).
2. Building a random algorithm by integration fragments upward (from leaves to root).

The given specific order of exploration of the tree is caused by that the resulting random algorithm needs to be
represented not only as a graph, but also as a set of figures [5] to retain the opportunity of graphic display of the
generated algorithm.

 First stage of the algorithm generation is listed below:
1. Insert a begin fragment (BE) to the fragment tree.
2. Randomly select an available parental fragment in the tree proportionally to the number of free arcs in it.

(Free arcs are those that can take part in the process of replacement by affiliated fragment. The number of
free arcs is initially determined by the type of the fragment and its parameters, and then is decremented at
each addition of the affiliated fragment (fig. 3))

3. Randomly choose a type of the fragment to be inserted proportionally to the probabilities of various
fragment types to occur, and set its parameters (number of paths, number of vertices, probabilities of arc
activation, etc.) Add this fragment to the tree.

4. If the finalization condition holds (got required total of vertices or fragments), then end up the algorithm,
otherwise go to step 2.

Fig. 3. Replacement of a free arc by an affiliated fragment

As the result of the first stage, we have a fragment tree that can be used for the synthesis of required algorithm as a
graph. Algorithm of the second stage looks as follows:

1. Mark all fragments of the tree as not considered.
2. Choose a fragment in the tree that has no considered affiliated fragments. Build its geometry: determine the

coordinates of vertices, arcs and affiliated fragments, determine geometric sizes of each fragment (fig. 4).
Adjust links between arcs of affiliated fragments (if they are present) and vertices of the current fragment.
Determine the activation probabilities and control flow for arcs of affiliated fragments. Determine at
random vectors of micro-operations and logic conditions for operator and condition vertices. Mark this
fragment as considered.

3. If all the fragments are considered, end up the algorithm, otherwise go to step 2.

Fig. 4. Determining geometric structure of fragment using a parallel fragment as an example

 Note that generally geometrical parameters of affiliated fragments (fig. 4) are not equal:

{ }1 1 1, , , , , , ,..., , ,..., , ,...,i j i j n n nH H W W i j B C A B B C C A A≠ ≠ ∀ ∉ ,

that makes certain difficulties in calculation of path arrangement, coordinates of vertices and arcs.
 Upon performing above listed actions, we have an algorithm represented as a graph and all its vertices and arcs
have coordinates on a plane and can be simply displayed on the screen.

4. EXAMPLES OF GENERATED SAMPLE RANDOM CONTROL ALGORITHMS

 With the purpose of confirmation of the described approach, we shall provide several examples of acyclic
algorithms generated according to our algorithm described above and realized as a part of software system PAE [5].

x2x6 a0

a1

y16y17 a2 y3 a3

y4y5y6 a6

y18 a7 y0y1y13 a8
y11y15 a11

y17 a12

y9y12y15 a13

x3x14 a14

a15

y10y18 a16

a17

a18

x4x9x1 a0

a1

y11 a2 y6y11 a3

y3y14y18 a6

y11y14 a7

y10y14 a10 y10y12y16 a11 y0y18 a12 y14 a13

y5y12y18 a16

y1y7 a17

y4y11y18 a18

a19

a20

6x10x1 a0

a1

y15 a2 y13 a3

0x7x1 a4

a5

y8y9y15 a6 y13 a7

y2y5y18 a10

y1y4y19 a11

y15y17 a12

y0y2y5 a15

y2y4y8 a16

y0y13y19 a17

a18

a19

x6x7 a0

a1

y2y11y14 a2 y19 a3

y8y14 a6 y0y6y14 a7 y0y5y11 a8
y10y17 a11 y8y18 a12

y0y2 a13

y8y11y13 a14

y0 a17

y1y16 a18

a19

a20

Fig. 5. Examples of generated sample random algorithms

5. ASSUMPTIONS

 Note that generated algorithms slightly differ from real those due to some admissions:

1. The lengths of linear paths are equiprobable.
2. The numbers of paths constituting alternative and parallel fragments are equiprobable.

3. The numbers of micro-operations and logic conditions of different vertexes are equiprobable.
4. The probabilities of presence of micro-operations and logic conditions in a vertex are equal.

However, as a whole the accepted admissions should not seriously influence objectivity of our comparison of
methods.
Автор выражает благодарность своему научному руководителю

6. CONCLUSION

1. An algorithm for constructing sample random logic control algorithms having any size and predefined
general parameters is developed and tested.

2. Generated random algorithms are represented not only as a graph, but also as a convenient view for graphic
output.

3. Based on the developed algorithm, we can perform not only method comparison, but also we can test
methods for errors.

4. In view of the considered approach, we can simply determine such an important characteristic of a
generated parallel algorithm as the degree of parallelism.

5. Speed characteristics of the developed realization of the algorithm are ~1500 algorithms with ~20 vertexes
per second using a PC equipped with Intel Celeron 850 МHz processor (CPUID=068Ah).

5. ACKNOWLEDGEMENTS

 The author would like to thank my scientific supervisor I.V. Zotov.

7. REFERENCES

[1] I.V. Zotov et al., Optimal algorithm separation in the design of microcontroller networks, Automatic Control and
Computer Sciences, No.5, 1997, pp. 41-52
[2] S.I. Baranov et al., A Method for Representation of Parallel Flow-Charts with a Set of Sequential Flow-Charts,
Automation and Computer Engineering, n. 5, 1984, pp. 74–81 (in Russian)
[3] A.D. Zakrevsky, Parallel Algorithms of Logic Control, Minsk, 1999 (in Russian)
[4] E.I. Vatutin, I.V. Zotov, A Method for the Construction of Suboptimal Separations of Parallel Control
Algorithms, Parallel Computations and Control Problems (PACO’04), Moscow, 2004, pp. 884–917 (in Russian)
[5] E.I. Vatutin, I.V. Zotov, A Software System for the Construction of Separations of Parallel Logic Control
Algorithms, System Identification and Control Problems (SICPRO’06), Moscow, 2006, pp. 2239–2250 (in Russian)

