УДК 681.3

Э.И. Ватутин

evatutin@rambler.ru

Юго-Западный государственный университет, г. Курск

АНАЛИЗ УЗКИХ МЕСТ ПРОГРАММНОЙ РЕАЛИЗАЦИИ МЕТОДА ПАРАЛЛЕЛЬНО-ПОСЛЕДОВАТЕЛЬНОЙ ДЕКОМПОЗИЦИИ ГРАФ-СХЕМ ПАРАЛЛЕЛЬНЫХ АЛГОРИТМОВ

В работе приведено описание результатов проведенной алгоритмической оптимизации программной реализации метода параллельно-последовательной декомпозиции и его узких мест.

Одной из задач, возникающих про проектировании систем логического управления в базисе логических мультиконтроллеров, является задача нахождения субоптимального разбиения граф-схемы параллельного алгоритма логического управления [1]. Для ее решения был разработан ряд эвристических методов, работающих в составе визуальной среды РАЕ. Предпочтение по качестве получаемых решений невозможно однозначно отдать одному из методов, т.к. в различных условиях тестирования (различное число вершин в граф-схемах алгоритмов N, различные значения технологических ограничений) методы демонстрируют существенно различное поведение, по-разному минимизируя показатели качества разбиения. Для подобного анализа в рамках проекта добровольных распределенных вычислений Gerasim@Home был поставлен вычислительный эксперимент, потребовавший в общей сложности 818 ГГц-лет вычислительного времени (приблизительно год расчетов на грид при производительности порядка 1 TFLOPS). Непосредственно перед расчетами была проведена высокоуровневая алгоритмическая программная оптимизация, в ходе которой был произведен анализ узких мест и их устранение по возможности [2]. В результате время построения разбиения с использованием метода параллельно-последовательной декомпозиции сократилось в 30 раз, что позволило произвести анализ области пространства параметров до $N = 500 \div 600$ (без оптимизации при тех же затратах машинного времени область пространства параметров была бы ограничена значением $N \approx 250$). В таблице приведено распределение затрат времени по этапам метода.

Таблица. Распределение затрат вычислительного времени по этапам метода параллельно-последовательной декомпозиции в зависимости от размерности задачи N

Этап	Размерность задачи			
	N = 10	N = 100	N = 500	N = 1000
Объединение ли-	3,57%	1,31%	0,29%	0,13%
нейных участков				

Добавление фик- тивных вершин	0,56%	0,28%	0,19%	0,08%
Построение матрицы отношений	14,98%	23,09%	18,07%	11,98%
Построение системы выражений Ξ	2,98%	0,87%	0,14%	0,06%
Поиск базового сечения	12,94%	13,89%	8,11%	5,51%
Построение мно- жества смежных сечений	13,74%	9,59%	2,19%	1,03%
Преобразование множества сечений	0,28%	0,07%	0,01%	0,00%
Построение скелетного графа	1,40%	1,03%	0,38%	0,19%
Построение бло- ков разбиения	49,55%	49,88%	70,63%	81,03%

Анализ приведенных в таблице данных показывает, что после проведения оптимизации бутылочным горлышком, требующим наибольшего числа машинного времени (от 50% до 81%), является этап построения блоков разбиения на основании заполнения и анализа таблиц включений. От 12% до 15% общего времени выполнения занимает этап построения матрицы отношений, на выполнение преобразований над R-выражениям в общей сложности тратится от 30% (при малых N) до 7% (при больших N). Остальные этапы методы не вносят существенного вклада в интегральное время построения разбиения.

1. Ватутин Э.И. Проектирование логических мультиконтроллеров. Синтез разбиений параллельных граф-схем алгоритмов. Saarbrucken: Lambert Academic Publishing, 2011 г. 292 с. ISBN 978-3-8433-1728-3.

2. Ватутин Э.И. Анализ эффективности и программная оптимизация методов синтеза разбиений параллельных алгоритмов логического управления в среде РАЕ // Известия ЮЗГУ. Серия «Управление, вычислительная техника, информатика. Медицинское приборостроение». 2012. № 2. Ч. 1. С. 191–195. ISSN 2223-1536.