Ватутин Э.И., Титов В.С. Юго-Западный государственный университет 305040, г. Курск, ул. 50 лет Октября, 94

Оценка аппаратной сложности логических мультиконтроллеров в зависимости от значений технологических ограничений и методов синтеза разбиений граф-схем параллельных алгоритмов

Одним из распространенных классов цифровых управляющих систем являются логические мультиконтроллеры (ЛМК) [1]. ЛМК представляет собой коллектив однотипных контроллеров, в совокупности решающий возложенную на них задачу управления некоторым объектом путем получения от него сигналов логических условий и выдачи сигналов микроопераций в дискретные моменты времени. В основе проектирования ЛМК лежит задача поиска субоптимального разбиения заданной граф-схемы $G = \langle A, V \rangle$ параллельного алгоритма логического управления на блоки (подалгоритмы) $\Gamma = \{A_1, A_2, ..., A_H\}$ ограниченной сложности с целью выполнения каждого из них одним из контроллеров в составе ЛМК. Данная задача относится к дискретным комбинаторным задачам многокритериальной оптимизации, а качество ее решения напрямую влияет на аппаратную сложность и быстродействие синтезируемого ЛМК.

Аппаратная сложность ЛМК складывается из аппаратной сложности логических контроллеров и связывающей их коммуникационной подсистемы и определяется как

$$R = (R_H + R_X X_{\text{max}} + R_Y Y_{\text{max}} + R_W W_{\text{max}}) H + R_C \left(\sum_{i=1}^H |X(A_i)| + \sum_{i=1}^H |Y(A_i)| \right) + R_\alpha \sum_{i=1}^H \sum_{i=1}^H \alpha(A_i, A_i),$$

где R_H , R_X , R_Y , R_W , R_C , R_α — соответственно аппаратные сложности логического контроллера в составе ЛМК, портов ввода/вывода в составе логических контроллеров для приема сигналов логических условий и выдачи сигналов микроопераций, памяти микропрограмм в составе контроллера, подсистемы передачи сигналов логических условий/микроопераций и коммуникационной подсистемы для реализации команд межконтроллерной передачи управления, X_{\max} и Y_{\max} — соответственно число выводов контроллера для приема сигналов логических условий и выдачи сигналов микроопераций, W_{\max} — емкость памяти микропрограмм контроллера, $\left|X\left(A_i\right)\right|$ — число сигналов логических условий, принимаемых условными вершинами i-го блока разбиения, $\left|Y\left(A_i\right)\right|$ — число сигналов микроопераций, выдаваемых операторными вершинами i-го блока разбиения, $\alpha\left(A_i,A_j\right)$ — число связей по управлению (микрокоманд передачи управления) между i-м и j-м блоками разбиения.

В ходе анализа качества разбиений, выполненного по результатам расчетов в проекте добровольных распределенных вычислений Gerasim@Home, было установлено наличие т.н. зон нечувствительности, в каждой из которых ослабление значений технологических ограничений выше некоторого порогового значения ($X'_{\rm max}$, $Y'_{\rm max}$ и $W'_{\rm max}$) ведет лишь к увеличению аппаратной сложности ЛМК и не приводит к улучшению остальных показателей качества разбиений и соответствующих им технических характеристик ЛМК. Также было показано, что ценой незначительного 5%-го ухудшения значений частных показателей качества разбиений можно существенно (до 17,2 раз) сократить требования к числу выводов для приема/выдачи сигналов логических условий и микроопераций, однако влияние данной оптимизации на общую аппаратную сложность ЛМК ранее проанализировано не было. С целью исследования потенциала для снижения аппаратной сложности ЛМК в целом на основании полученных ранее экспериментальных данных был произведен расчет аппаратной сложности R в зависимости от числа вершин N = |A| в составе граф-схем алгоритмов управления, значений технологических ограничений на примере ограничения $X_{\rm max}$ и анализа усредненных значений показателей

качества разбиений, результаты которого приведены на рис. 1, а оценки получаемого выигрыша в аппаратной сложности – в табл. 1.

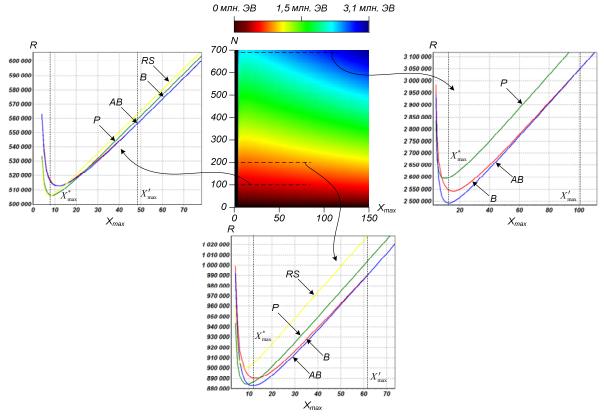


Рис. 1. Зависимость аппаратной сложности R проектируемого ЛМК от числа вершин N в графсхемах алгоритмов управления и числа принимаемых контроллером сигналов логических условий X_{\max} при $Y_{\max} = 100$ и $W_{\max} = 100$ (В – сокращенное обозначение метода С.И. Баранова, АВ – жадного метода с ограничением на смежность, P – метода параллельнопоследовательной декомпозиции, RS – метода случайного перебора)

Таблица 1. Результаты оценки выигрыша в аппаратной сложности ЛМК

N	Граница области нечувстви- тельности $X'_{ m max}$	Аппаратная сложность <i>R'</i> ЛМК на границе области нечувствительности	Оптима- льное значение ограни- чения X_{\max}^*	Аппаратная сложность R^* ЛМК при оптимальном значении ограничения	Выи- грыш $\eta = \frac{R'}{R^*}$
100	49	556 – 565 тыс. ЭВ	8	508 – 516 тыс. ЭВ	8-11%
200	64	995 – 1035 тыс. ЭВ	8 – 15	885 – 900 тыс. ЭВ	12-17%
700	101	3,05 – 3,15 млн. ЭВ	9 – 16	2,49 – 2,59 млн. ЭВ	18-27%

В ходе анализа полученных результатов можно сделать вывод о том, что выбор оптимального значения $X_{\rm max}^*$ числа выводов для приема логических сигналов от объекта управления позволяет снизить аппаратную сложность проектируемого ЛМК от 8% до 27% в зависимости от размера граф-схем алгоритмов управления. При этом вклад в данную величину выбора оптимального метода синтеза разбиений составляет от 1,5% до 4%.

Литература

1. Ватутин Э.И. Проектирование логических мультиконтроллеров. Синтез разбиений параллельных граф-схем алгоритмов. Saarbrucken: Lambert Academic Publishing, 2011 г. 292 с.