Maximum number of diagonal transversals in Brown's diagonal Latin squares of order N=2n, https://oeis.org/Axxxxxx n=2, a(2)=0 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 - n=4, a(4)=4 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2 n=6, a(6)=6 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 4 5 1 2 0 5 3 4 4 3 5 0 2 1 3 5 1 4 0 2 5 4 3 2 1 0 2 0 4 1 5 3 n=8, a(8)=120 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 4 5 6 7 2 3 0 1 6 7 4 5 1 5 4 0 7 3 2 6 5 4 7 6 1 0 3 2 3 7 6 2 5 1 0 4 7 6 5 4 3 2 1 0 4 0 1 5 2 6 7 3 6 2 3 7 0 4 5 1 n=10, a(10)>=890 Announcement: https://vk.com/wall162891802_1794, Eduard I. Vatutin, Nov 01 2021 Way of finding: expanding spectrum of diagonal transversals of DLS using loop rotation neighborhoods, diagonalizing 0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 9 5 6 7 8 3 4 9 8 2 7 1 0 5 6 6 5 0 1 7 2 8 9 4 3 9 8 7 6 5 4 3 2 1 0 4 0 8 2 3 6 7 1 9 5 8 7 6 5 9 0 4 3 2 1 5 9 1 7 6 3 2 8 0 4 7 6 5 9 8 1 0 4 3 2 2 3 4 0 1 8 9 5 6 7 n=12, a(12)>=28496 Announcement: -, Eduard I. Vatutin, ~Aug 18 2021 Way of finding: diagonalizing of known double Brown square (obtained using the composite squares method + diagonalizing) 0 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 0 11 6 7 8 9 10 5 0 1 2 3 4 7 8 9 10 11 6 8 7 6 11 10 9 2 1 0 5 4 3 7 6 11 10 9 8 3 2 1 0 5 4 9 8 7 6 11 10 1 0 5 4 3 2 6 11 10 9 8 7 4 3 2 1 0 5 10 9 8 7 6 11 0 5 4 3 2 1 11 10 9 8 7 6 5 4 3 2 1 0 2 3 4 5 0 1 10 11 6 7 8 9 4 5 0 1 2 3 8 9 10 11 6 7 3 4 5 0 1 2 9 10 11 6 7 8 n=14, a(14)>=490218 Announcement: https://vk.com/wall162891802_2440, Eduard I. Vatutin, Jul 16 2023 Way of finding: full distributed diagonalizing of top (by transversals number) known DLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 0 13 7 8 9 10 11 12 3 4 5 6 0 1 2 11 12 13 7 8 9 10 11 10 9 8 7 13 12 1 0 6 5 4 3 2 9 8 7 13 12 11 10 3 2 1 0 6 5 4 8 7 13 12 11 3 9 4 10 2 1 0 6 5 12 11 10 9 8 7 13 0 6 5 4 3 2 1 5 6 0 1 2 10 4 9 3 11 12 13 7 8 6 0 1 2 10 9 5 8 4 3 11 12 13 7 7 13 12 11 3 4 8 5 9 10 2 1 0 6 10 9 8 7 13 12 11 2 1 0 6 5 4 3 4 5 6 0 1 2 3 10 11 12 13 7 8 9 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2 3 4 5 6 0 1 12 13 7 8 9 10 11 n=16, a(16)>=32172800 Announcement: https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=109&postid=1201, Natalia Makarova, Jan 15 2021 Way of finding: composite squares method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 Dec 22 2024