Maximum number of ODLS in Brown's diagonal Latin squares of order N=2n, https://oeis.org/Axxxxxx n=2, a(2)=0 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 - n=4, a(4)=1 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2 n=6, a(6)=0 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 4 5 1 2 0 5 3 4 4 3 5 0 2 1 3 0 1 4 5 2 5 4 3 2 1 0 2 5 4 1 0 3 n=8, a(8)=824 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 4 5 6 7 2 3 0 1 6 7 4 5 4 5 6 7 0 1 2 3 6 7 4 5 2 3 0 1 3 2 1 0 7 6 5 4 1 0 3 2 5 4 7 6 7 6 5 4 3 2 1 0 5 4 7 6 1 0 3 2 n=10, a(10)=8 Announcement: -, Alexey D. Belyshev, Apr 27 2017 Way of finding: brute force 0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 9 5 6 7 8 3 4 9 8 7 2 1 0 5 6 8 7 6 5 9 0 4 3 2 1 7 3 4 0 8 1 9 5 6 2 5 0 8 7 3 6 2 1 9 4 4 9 1 2 6 3 7 8 0 5 2 6 5 9 1 8 0 4 3 7 9 8 7 6 5 4 3 2 1 0 6 5 0 1 2 7 8 9 4 3 n=12, a(12)>=1764493860 Announcement: https://vk.com/wall162891802_1734, Eduard I. Vatutin, Aug 26 2021 0 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 0 11 6 7 8 9 10 5 0 1 2 3 4 7 8 9 10 11 6 8 7 6 11 10 9 2 1 0 5 4 3 7 6 11 10 9 8 3 2 1 0 5 4 9 8 7 6 11 10 1 0 5 4 3 2 6 11 10 9 8 7 4 3 2 1 0 5 10 9 8 7 6 11 0 5 4 3 2 1 11 10 9 8 7 6 5 4 3 2 1 0 2 3 4 5 0 1 10 11 6 7 8 9 4 5 0 1 2 3 8 9 10 11 6 7 3 4 5 0 1 2 9 10 11 6 7 8 Dec 22 2024