Maximum number of transversals in Brown's diagonal Latin squares of order N=2n, https://oeis.org/Axxxxxx n=2, a(2)=0 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 - n=4, a(4)=8 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2 n=6, a(6)=32 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 4 5 1 2 0 5 3 4 4 3 5 0 2 1 3 0 1 4 5 2 5 4 3 2 1 0 2 5 4 1 0 3 n=8, a(8)=384 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 4 5 6 7 1 2 3 0 7 4 5 6 3 7 1 5 2 6 0 4 7 6 5 4 3 2 1 0 5 3 7 1 6 0 4 2 6 5 4 7 0 3 2 1 4 0 6 2 5 1 7 3 2 4 0 6 1 7 3 5 n=10, a(10)>=5504 Article: J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49. Way of finding: ? 0 8 5 1 7 3 4 6 9 2 5 1 7 2 9 8 0 3 4 6 1 7 2 9 5 6 8 0 3 4 9 6 4 3 0 2 7 1 5 8 3 0 8 6 4 1 5 9 2 7 4 3 0 8 6 5 9 2 7 1 7 2 9 5 1 4 6 8 0 3 6 4 3 0 8 9 2 7 1 5 2 9 6 4 3 7 1 5 8 0 8 5 1 7 2 0 3 4 6 9 n=12, a(12)>=198144 Announcement: https://vk.com/wall162891802_1603, Eduard I. Vatutin, Mar 25 2021 (was known before as LS, see https://users.monash.edu.au/~iwanless/data/transversals/) Way of finding: composite squares method + diagonalizing/rotating subsquares 0 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 0 11 6 7 8 9 10 9 8 7 6 11 10 1 0 5 4 3 2 4 5 0 1 2 3 8 9 10 11 6 7 6 11 10 9 8 7 4 3 2 1 0 5 11 10 9 8 7 6 5 4 3 2 1 0 3 4 5 0 1 2 9 10 11 6 7 8 2 3 4 5 0 1 10 11 6 7 8 9 10 9 8 7 6 11 0 5 4 3 2 1 5 0 1 2 3 4 7 8 9 10 11 6 7 6 11 10 9 8 3 2 1 0 5 4 8 7 6 11 10 9 2 1 0 5 4 3 n=14, a(14)>=3477504 Announcement: https://vk.com/wall162891802_1914, Eduard I. Vatutin, Jan 27 2022 Way of finding: expanding spectrum of diagonal transversals in DLS using intercalate rotation neighborhoods 0 1 2 3 9 5 7 6 8 4 10 11 12 13 13 12 11 10 4 8 6 7 5 9 3 2 1 0 10 2 5 6 12 13 9 4 0 1 7 8 11 3 1 3 6 11 0 9 8 5 4 13 2 7 10 12 9 0 3 1 8 6 11 2 7 5 12 10 13 4 5 9 12 0 6 2 3 10 11 7 13 1 4 8 11 7 9 8 3 1 13 0 12 10 5 4 6 2 3 11 8 7 1 0 4 9 13 12 6 5 2 10 7 8 0 4 11 3 12 1 10 2 9 13 5 6 8 4 1 13 7 11 10 3 2 6 0 12 9 5 6 5 13 9 2 10 1 12 3 11 4 0 8 7 4 13 10 12 5 7 2 11 6 8 1 3 0 9 2 6 4 5 10 12 0 13 1 3 8 9 7 11 12 10 7 2 13 4 5 8 9 0 11 6 3 1 n=16, a(16)>=244744192 Announcement 1 (value without proving DLS): https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=138&postid=2731, Natalia Makarova, Jul 30 2021 (was known before as LS, see https://users.monash.edu.au/~iwanless/data/transversals/) Announcement 2 (value and DLS): https://vk.com/wall162891802_1900, Eduard I. Vatutin, Jan 22 2022 Way of finding: composite squares method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 0 1 5 4 7 6 9 8 11 10 14 15 12 13 3 2 1 0 6 7 4 5 10 11 8 9 15 14 13 12 1 0 3 2 7 6 5 4 11 10 9 8 13 12 15 14 8 11 9 10 14 12 13 15 0 2 3 1 5 6 4 7 10 9 11 8 13 15 14 12 3 1 0 2 7 4 6 5 11 8 10 9 15 13 12 14 1 3 2 0 6 5 7 4 9 10 8 11 12 14 15 13 2 0 1 3 4 7 5 6 14 15 12 13 8 9 10 11 4 5 6 7 2 3 0 1 13 12 15 14 10 11 8 9 6 7 4 5 1 0 3 2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 9 8 11 10 5 4 7 6 0 1 2 3 6 5 7 4 3 1 0 2 13 15 14 12 11 8 10 9 7 4 6 5 1 3 2 0 15 13 12 14 10 9 11 8 4 7 5 6 0 2 3 1 14 12 13 15 9 10 8 11 5 6 4 7 2 0 1 3 12 14 15 13 8 11 9 10 Dec 16 2024