Minimum number of transversals in Brown's diagonal Latin squares of order N=2n, https://oeis.org/Axxxxxx n=2, a(2)=0 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 - n=4, a(4)=8 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2 n=6, a(6)=32 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 4 5 1 2 0 5 3 4 4 3 5 0 2 1 3 0 1 4 5 2 5 4 3 2 1 0 2 5 4 1 0 3 n=8, a(8)=128 Announcement: https://vk.com/wall162891802_2895, Eduard I. Vatutin, Dec 16 2024 Way of finding: brute force 0 1 2 3 4 5 6 7 1 2 3 0 5 7 4 6 5 4 6 7 0 1 3 2 7 6 4 5 3 2 0 1 4 5 7 6 1 0 2 3 6 7 5 4 2 3 1 0 3 0 1 2 6 4 7 5 2 3 0 1 7 6 5 4 n=10, a(10)<=256 Announcement: -, Eduard I. Vatutin, Dec 16 2024 Way of finding: random search, from experiments with spectra 0 1 2 3 4 5 6 7 8 9 1 5 6 9 2 7 0 3 4 8 9 8 7 6 5 4 3 2 1 0 3 2 9 4 8 1 5 0 7 6 6 7 0 5 1 8 4 9 2 3 5 9 8 2 3 6 7 1 0 4 8 4 3 0 7 2 9 6 5 1 4 0 1 7 6 3 2 8 9 5 2 6 4 1 9 0 8 5 3 7 7 3 5 8 0 9 1 4 6 2 n=12, a(12)<=9984 Announcement: -, Eduard I. Vatutin, May 22 2022 Way of finding: random search, from experiments with spectra 0 1 2 3 4 5 6 7 8 9 10 11 1 2 0 4 5 3 8 6 7 11 9 10 2 3 7 5 0 10 1 11 6 4 8 9 4 8 9 6 11 1 5 0 10 7 3 2 3 9 10 0 1 2 4 5 11 6 7 8 5 4 11 7 6 8 3 10 9 0 2 1 9 10 3 1 2 0 11 4 5 8 6 7 11 5 4 8 7 6 10 9 3 2 1 0 10 0 5 2 3 7 9 8 4 1 11 6 6 11 1 9 8 4 7 3 2 10 0 5 7 6 8 10 9 11 0 2 1 3 5 4 8 7 6 11 10 9 2 1 0 5 4 3 n=14, a(14)<=190976 Announcement: -, Eduard I. Vatutin, Sep 22 2024 Way of finding: random search, from experiments with spectra 0 1 2 3 4 5 6 7 8 9 10 11 12 13 8 7 1 13 11 9 3 10 4 2 0 12 6 5 6 3 9 11 8 1 0 13 12 5 2 4 10 7 10 4 6 8 13 11 12 1 2 0 5 7 9 3 11 5 13 1 10 6 4 9 7 3 12 0 8 2 7 10 4 2 5 12 13 0 1 8 11 9 3 6 1 2 10 9 6 13 5 8 0 7 4 3 11 12 5 6 12 0 2 4 10 3 9 11 13 1 7 8 3 9 7 5 0 2 1 12 11 13 8 6 4 10 12 11 3 4 7 0 8 5 13 6 9 10 2 1 2 8 0 12 3 7 9 4 6 10 1 13 5 11 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4 0 8 6 1 10 2 11 3 12 7 5 13 9 9 13 5 7 12 3 11 2 10 1 6 8 0 4 n=16, a(16)<=244744192 Announcement: -, Eduard I. Vatutin, Dec 16 2024 Way of finding: composite squares method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 0 1 5 4 7 6 9 8 11 10 14 15 12 13 3 2 1 0 6 7 4 5 10 11 8 9 15 14 13 12 1 0 3 2 7 6 5 4 11 10 9 8 13 12 15 14 8 11 9 10 14 12 13 15 0 2 3 1 5 6 4 7 10 9 11 8 13 15 14 12 3 1 0 2 7 4 6 5 11 8 10 9 15 13 12 14 1 3 2 0 6 5 7 4 9 10 8 11 12 14 15 13 2 0 1 3 4 7 5 6 14 15 12 13 8 9 10 11 4 5 6 7 2 3 0 1 13 12 15 14 10 11 8 9 6 7 4 5 1 0 3 2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 9 8 11 10 5 4 7 6 0 1 2 3 6 5 7 4 3 1 0 2 13 15 14 12 11 8 10 9 7 4 6 5 1 3 2 0 15 13 12 14 10 9 11 8 4 7 5 6 0 2 3 1 14 12 13 15 9 10 8 11 5 6 4 7 2 0 1 3 12 14 15 13 8 11 9 10 Dec 22 2024