Maximum number of transversals in an extended self-orthogonal diagonal Latin square of order n, https://oeis.org/Axxxxxx n=1, a(1)=1 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 n=2, a(2)=0 - n=3, a(3)=0 - n=4, a(4)=8 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2 n=5, a(5)=15 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2 n=6, a(6)=0 - n=7, a(7)=133 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 5 6 2 3 1 5 6 4 0 5 6 4 0 1 2 3 4 0 6 2 3 1 5 6 2 0 1 5 3 4 1 5 3 4 0 6 2 3 4 5 6 2 0 1 n=8, a(8)=384 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 5 6 7 2 3 0 1 6 7 4 5 4 5 6 7 0 1 2 3 6 7 4 5 2 3 0 1 3 2 1 0 7 6 5 4 1 0 3 2 5 4 7 6 7 6 5 4 3 2 1 0 5 4 7 6 1 0 3 2 n=9, a(9)=2241 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 5 6 7 8 2 3 4 8 0 6 7 5 1 8 6 1 7 3 0 2 4 5 7 0 5 2 6 3 8 1 4 5 2 6 4 7 8 1 3 0 3 5 8 6 1 4 0 2 7 4 8 0 1 2 7 5 6 3 6 4 7 0 5 1 3 8 2 1 7 3 5 8 2 4 0 6 n=10, a(10)=988 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 5 6 7 8 9 1 2 3 0 6 8 5 9 7 4 7 5 1 8 2 4 9 6 3 0 6 4 5 7 9 3 8 0 2 1 8 9 0 4 3 1 2 5 6 7 9 8 7 2 0 6 1 4 5 3 3 0 6 5 7 9 4 2 1 8 5 7 4 9 1 2 3 8 0 6 4 3 8 6 5 7 0 1 9 2 2 6 9 1 8 0 7 3 4 5 Jan 31 2025