Minimum number of transversals in an extended self-orthogonal diagonal Latin square of order n, https://oeis.org/Axxxxxx n=1, a(1)=1 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 n=2, a(2)=0 - n=3, a(3)=0 - n=4, a(4)=8 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2 n=5, a(5)=15 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2 n=6, a(6)=0 - n=7, a(7)=23 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 5 6 1 2 5 4 6 0 3 5 3 6 1 2 4 0 2 6 4 5 0 3 1 4 0 1 2 3 6 5 6 4 3 0 5 1 2 3 5 0 6 1 2 4 n=8, a(8)=128 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 5 6 7 1 2 0 4 3 7 5 6 2 3 7 6 1 0 4 5 7 4 1 5 2 6 3 0 3 0 5 1 6 2 7 4 6 7 3 2 5 4 0 1 5 6 4 0 7 3 1 2 4 5 6 7 0 1 2 3 n=9, a(9)=133 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 5 6 7 8 1 2 3 5 8 4 0 6 7 5 3 6 1 0 7 2 8 4 3 4 0 7 6 1 8 5 2 6 0 8 4 3 2 7 1 5 4 6 7 0 5 8 1 2 3 2 7 4 8 1 0 5 3 6 8 5 1 2 7 6 3 4 0 7 8 5 6 2 3 4 0 1 n=10, a(10)=716 Announcement: https://vk.com/wall162891802_2937, Eduard I. Vatutin, Jan 31 2025 Way of finding: brute force 0 1 2 3 4 5 6 7 8 9 1 2 0 4 6 8 7 9 3 5 9 7 8 0 3 1 2 5 4 6 7 6 9 5 1 4 0 8 2 3 4 3 1 8 9 6 5 2 0 7 3 5 6 9 8 7 4 0 1 2 8 0 5 1 2 9 3 6 7 4 6 8 7 2 5 3 1 4 9 0 5 4 3 7 0 2 9 1 6 8 2 9 4 6 7 0 8 3 5 1 Jan 31 2025