1. Structure 1N0M1C
DLSs within combinatorial structure:
DLS 1: 012345678123487056638720145867503214375168402506214387480651723241876530754032861
Adjacency matrix:
0
Different CFs set within combinatorial structure:
CF 1: 012345678123487056638720145867503214375168402506214387480651723241876530754032861
Ascending sorted vector of vertices powers:
[0]
Multiset of vertices powers:
{0:1}
2. Structure 2N1M1C
DLSs within combinatorial structure:
DLS 1: 012345678123758046435820761358671402681034527840567213576482130704216385267103854
DLS 2: 012345678368071524741208356236784015807456231583612407450137862675823140124560783
Adjacency matrix:
01
10
Different CFs set within combinatorial structure:
CF 1: 012345678123758046435820761358671402681034527840567213576482130704216385267103854
Ascending sorted vector of vertices powers:
[1, 1]
Multiset of vertices powers:
{1:2}
3. Structure 2N1M2C
DLSs within combinatorial structure:
DLS 1: 012345678123780546648137052251603487537416820876254103305821764460578231784062315
DLS 2: 012345678531678024785023461624810735478562103240781356863457210357106842106234587
Adjacency matrix:
01
10
Different CFs set within combinatorial structure:
CF 1: 012345678123780546648137052251603487537416820876254103305821764460578231784062315
CF 2: 012345678127058436534806721748521360873164052360487215485632107601273584256710843
Ascending sorted vector of vertices powers:
[1, 1]
Multiset of vertices powers:
{1:2}
4. Structure 3N2M2C
DLSs within combinatorial structure:
DLS 1: 012345678123087546534601287357820164846732015708156432265418703471263850680574321
DLS 2: 012345678578426130841753062230517846385164207467208513624071385756830421103682754
DLS 3: 012345678123087546534601287357820164846732051708516432261458703475263810680174325
Adjacency matrix:
010
101
010
Different CFs set within combinatorial structure:
CF 1: 012345678123087546534601287357820164846732015708156432265418703471263850680574321
CF 2: 012345678120486537847051263264530781386712405731628054605874312578263140453107826
Ascending sorted vector of vertices powers:
[1, 1, 2]
Multiset of vertices powers:
{1:2, 2:1}
5. Structure 3N2M3C
DLSs within combinatorial structure:
DLS 1: 012345678123508467647130582481672053568214730876453201350726814235087146704861325
DLS 2: 012345678457620831874503216360187542723861054235018467601234785148756320586472103
DLS 3: 012345678168537204503186427421703865275618340680254731846072513357420186734861052
Adjacency matrix:
010
101
010
Different CFs set within combinatorial structure:
CF 1: 012345678123508467647130582481672053568214730876453201350726814235087146704861325
CF 2: 012345678123780465437856102350612847685031724876504213264178530501427386748263051
CF 3: 012345678123680457586432701248576310675813042430257186754021863807164235361708524
Ascending sorted vector of vertices powers:
[1, 1, 2]
Multiset of vertices powers:
{1:2, 2:1}
6. Structure 3N3M1C
DLSs within combinatorial structure:
DLS 1: 012345678235170846106428357570832164328654701643017285851706423467283510784561032
DLS 2: 012345678781034562863750124625403781246578013457261830134687205308126457570812346
DLS 3: 012345678853706214648213705267184530135067482784532061470821356521670843306458127
Adjacency matrix:
011
101
110
Different CFs set within combinatorial structure:
CF 1: 012345678235170846106428357570832164328654701643017285851706423467283510784561032
Ascending sorted vector of vertices powers:
[2, 2, 2]
Multiset of vertices powers:
{2:3}
7. Structure 3N3M2C
DLSs within combinatorial structure:
DLS 1: 012345678124076853658123704287531460431760285765284031570812346843607512306458127
DLS 2: 012345678386150427467802135120487356245638710873561204734026581501274863658713042
DLS 3: 012345678547683210105267483731856024864571302386012547423708165658420731270134856
Adjacency matrix:
011
101
110
Different CFs set within combinatorial structure:
CF 1: 012345678124076853658123704287531460431760285765284031570812346843607512306458127
CF 2: 012345678124058736408236157851702364745160823267413085380674512673581240536827401
Ascending sorted vector of vertices powers:
[2, 2, 2]
Multiset of vertices powers:
{2:3}
8. Structure 3N3M3C
DLSs within combinatorial structure:
DLS 1: 012345678123480765287016543734652180506738214865124307340571826671803452458267031
DLS 2: 012345678731654802405861327283716045864127530320578416657402183548230761176083254
DLS 3: 012345678645208317738654201127580463473062185586731024864123750250417836301876542
Adjacency matrix:
011
101
110
Different CFs set within combinatorial structure:
CF 1: 012345678123480765287016543734652180506738214865124307340571826671803452458267031
CF 2: 012345678120478536568127043743652810835216704307564281284701365476830152651083427
CF 3: 012345678120586347548120763304671852736854210485037126673218405861702534257463081
Ascending sorted vector of vertices powers:
[2, 2, 2]
Multiset of vertices powers:
{2:3}
9. Structure 4N3M2C
DLSs within combinatorial structure:
DLS 1: 012345678123458760685127403851763042738014526304276185240631857476580231567802314
DLS 2: 012345678487206531724863150173684205860457312538721046356012784605138427241570863
DLS 3: 012345678523481760638127405385762041751034826804576213240658137476810352167203584
DLS 4: 012345678487256301724830156570184263835467012168723540603512784351608427246071835
Adjacency matrix:
0100
1010
0101
0010
Different CFs set within combinatorial structure:
CF 1: 012345678123458760685127403851763042738014526304276185240631857476580231567802314
CF 2: 012345678124037856487163205531670482205816743360458127743281560876524031658702314
Ascending sorted vector of vertices powers:
[1, 1, 2, 2]
Multiset of vertices powers:
{1:2, 2:2}
10. Structure 4N3M3C
DLSs within combinatorial structure:
DLS 1: 012345678123078546607453182284516703841632057576284310430761825358107264765820431
DLS 2: 012345678578416032185034726357280461423768510864571203601852347740623185236107854
DLS 3: 012345678153608724726453180480716253801237465645082317234571806378160542567824031
DLS 4: 012345678643071825507263184428156703861532047176428350230784516354807261785610432
Adjacency matrix:
0100
1011
0100
0100
Different CFs set within combinatorial structure:
CF 1: 012345678123078546607453182284516703841632057576284310430761825358107264765820431
CF 2: 012345678120456837874503216235784160351867024463178502687210345708621453546032781
CF 3: 012345678127483056635027184564802713753168240486751302870536421241670835308214567
Ascending sorted vector of vertices powers:
[1, 1, 1, 3]
Multiset of vertices powers:
{1:3, 3:1}
11. Structure 4N3M4C
DLSs within combinatorial structure:
DLS 1: 012345678236870154647058231578134062854261703483702516761583420105426387320617845
DLS 2: 012345678843506712251760483384617205726158340167283054570432861438071526605824137
DLS 3: 012345678853026417401267583385612704246178350167483025520734861738501246674850132
DLS 4: 012345678734860251476058132528734016851426703283601547167583420605217384340172865
Adjacency matrix:
0110
1001
1000
0100
Different CFs set within combinatorial structure:
CF 1: 012345678236870154647058231578134062854261703483702516761583420105426387320617845
CF 2: 012345678123076845854703261267581304671832450548627013485260137306154782730418526
CF 3: 012345678123058764738216045376401852651734280804567123467820531540682317285173406
CF 4: 012345678234781065607534182581673204148256730875402316450167823326810547763028451
Ascending sorted vector of vertices powers:
[1, 1, 2, 2]
Multiset of vertices powers:
{1:2, 2:2}
12. Structure 4N3M4C
DLSs within combinatorial structure:
DLS 1: 012345678126083745854106237741820356573614802468537021387462510230758164605271483
DLS 2: 012345678547806123103274586458731062734068251685412307260157834876523410321680745
DLS 3: 012345678864230715278653041520176483601827534356784120745018362137402856483561207
DLS 4: 012345678125087346874103265641820537357614802438576021583462710260738154706251483
Adjacency matrix:
0100
1011
0100
0100
Different CFs set within combinatorial structure:
CF 1: 012345678126083745854106237741820356573614802468537021387462510230758164605271483
CF 2: 012345678124038765785162304651784032570216843846573210367850421403621587238407156
CF 3: 012345678120437865685172403751860342437618250306584127563021784874256031248703516
CF 4: 012345678123780546406258713635402187768514320284637051570123864851076432347861205
Ascending sorted vector of vertices powers:
[1, 1, 1, 3]
Multiset of vertices powers:
{1:3, 3:1}
13. Structure 4N4M1C
DLSs within combinatorial structure:
DLS 1: 012345678128057436734128560861504327673812045480736152356281704507463281245670813
DLS 2: 012345678871206345165780234304671852280534167746028513537162480453817026628453701
DLS 3: 012345678345286710456801327630712485127453806573068241804627153268170534781534062
DLS 4: 012345678254138067823067451165483720348670512637251804481706235706524183570812346
Adjacency matrix:
0110
1001
1001
0110
Different CFs set within combinatorial structure:
CF 1: 012345678128057436734128560861504327673812045480736152356281704507463281245670813
Ascending sorted vector of vertices powers:
[2, 2, 2, 2]
Multiset of vertices powers:
{2:4}
14. Structure 4N4M2C
DLSs within combinatorial structure:
DLS 1: 012345678123478560684701352807612435236850147345127086760534821578063214451286703
DLS 2: 012345678681753042326174580140587326578416203854032167403268715765820431237601854
DLS 3: 012345678241567803803174265168753042675418320587602134324086517456230781730821456
DLS 4: 012345678726810534468721053301476285830652741675283410287534106543107862154068327
Adjacency matrix:
0110
1001
1001
0110
Different CFs set within combinatorial structure:
CF 1: 012345678123478560684701352807612435236850147345127086760534821578063214451286703
CF 2: 012345678123458067864507213605813724238674501756081432471260385347126850580732146
Ascending sorted vector of vertices powers:
[2, 2, 2, 2]
Multiset of vertices powers:
{2:4}
15. Structure 4N4M3C
DLSs within combinatorial structure:
DLS 1: 012345678126758304837264150648517023571036842350481267785602431463120785204873516
DLS 2: 012345678760234851253187406537806142685471320148062735401728563824653017376510284
DLS 3: 012345678740236851456187203527804136285471360168023745301768524834652017673510482
DLS 4: 012345678627158304831624750748561023576032841350487162185206437463710285204873516
Adjacency matrix:
0110
1001
1001
0110
Different CFs set within combinatorial structure:
CF 1: 012345678126758304837264150648517023571036842350481267785602431463120785204873516
CF 2: 012345678123478506487056132801562743560237481346781025234610857758124360675803214
CF 3: 012345678235761804164208753581634027673850241840127365756482130427013586308576412
Ascending sorted vector of vertices powers:
[2, 2, 2, 2]
Multiset of vertices powers:
{2:4}
16. Structure 4N4M4C
DLSs within combinatorial structure:
DLS 1: 012345678123704865671258430860471253745836102386527014437680521504162387258013746
DLS 2: 012345678856273041304782156521837460167420583478016235785164302230658714643501827
DLS 3: 012345678356287041804723156571832460168470523423016785285164307730658214647501832
DLS 4: 012345678123754860671208435865471203740836152386527014437680521504162387258013746
Adjacency matrix:
0110
1001
1001
0110
Different CFs set within combinatorial structure:
CF 1: 012345678123704865671258430860471253745836102386527014437680521504162387258013746
CF 2: 012345678120678543675183204547826310386410752264037185803752461458261037731504826
CF 3: 012345678123657840756180234547831062680472513478063125235718406861204357304526781
CF 4: 012345678123754860671208435865471203740836152386527014437680521504162387258013746
Ascending sorted vector of vertices powers:
[2, 2, 2, 2]
Multiset of vertices powers:
{2:4}
17. Structure 4N6M1C
DLSs within combinatorial structure:
DLS 1: 012345678231470865786153204560827431347516082128034756873261540654708123405682317
DLS 2: 012345678680217543821564730154782306275430861743156082436078215308621457567803124
DLS 3: 012345678546781230157026483485630127823154706304278561761802354270463815638517042
DLS 4: 012345678324856701403687125748563012631278540856401237185720463567012384270134856
Adjacency matrix:
0111
1011
1101
1110
Different CFs set within combinatorial structure:
CF 1: 012345678231470865786153204560827431347516082128034756873261540654708123405682317
Ascending sorted vector of vertices powers:
[3, 3, 3, 3]
Multiset of vertices powers:
{3:4}
18. Structure 5N4M2C
DLSs within combinatorial structure:
DLS 1: 012345678123508467876413250754860321367054812240781536581632704638127045405276183
DLS 2: 012345678241783506458160732120674853734516280683257041805421367567038124376802415
DLS 3: 012345678741683520657128034186207453238510746873456201405871362564032187320764815
DLS 4: 012345678238156740541837062625403187483670251764218305806724513357061824170582436
DLS 5: 012345678235681740648037125106423857453172086784256301820714563367508214571860432
Adjacency matrix:
01111
10000
10000
10000
10000
Different CFs set within combinatorial structure:
CF 1: 012345678123508467876413250754860321367054812240781536581632704638127045405276183
CF 2: 012345678123857064675082143541760832708634251836401725367528410450216387284173506
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4]
Multiset of vertices powers:
{1:4, 4:1}
19. Structure 5N4M3C
DLSs within combinatorial structure:
DLS 1: 012345678123086547647812350478631205206758431531204786350127864865473012784560123
DLS 2: 012345678847612053135067482726850314580423167304176825263581740471208536658734201
DLS 3: 012345678850712364486037512123870456631524087745163820204681735578206143367458201
DLS 4: 012345678753026841647581320481632507806217435238704156370158264165473082524860713
DLS 5: 012345678783026145641752380458631702506278431837504216320817564165483027274160853
Adjacency matrix:
01100
10010
10001
01000
00100
Different CFs set within combinatorial structure:
CF 1: 012345678123086547647812350478631205206758431531204786350127864865473012784560123
CF 2: 012345678235670841864127305540762183308514726671038254426801537157283460783456012
CF 3: 012345678230178564458236107571602843306857421167024385823410756645783210784561032
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2]
Multiset of vertices powers:
{1:2, 2:3}
20. Structure 5N4M3C
DLSs within combinatorial structure:
DLS 1: 012345678230674851465028317681732504328510746157486230876103425504267183743851062
DLS 2: 012345678583206714807134256138457062740862135265013847624781503451678320376520481
DLS 3: 012345678328750461461823507745612380687031254856407123230574816573186042104268735
DLS 4: 012345678827653041364802517741526380578014263156738402483160725605287134230471856
DLS 5: 012345678847520361568213047386701524421038756753486102135674280670852413204167835
Adjacency matrix:
01000
10111
01000
01000
01000
Different CFs set within combinatorial structure:
CF 1: 012345678230674851465028317681732504328510746157486230876103425504267183743851062
CF 2: 012345678123780546786134025251803764537416802468257130305621487874062351640578213
CF 3: 012345678123507864586074231734860512407612385658723140875231406240186753361458027
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4]
Multiset of vertices powers:
{1:4, 4:1}
21. Structure 5N4M4C
DLSs within combinatorial structure:
DLS 1: 012345678230167845164028357725830461803754126387216504451602783576483210648571032
DLS 2: 012345678685431702821753460403612587260578341758124036346087215137206854574860123
DLS 3: 012345678845236701458763120103624587560872314724581036386017245637108452271450863
DLS 4: 012345678384276501837564120148602357765438012203751486576810234650127843421083765
DLS 5: 012345678684501732821734560348612057256478301705123486530867214167250843473086125
Adjacency matrix:
01111
10000
10000
10000
10000
Different CFs set within combinatorial structure:
CF 1: 012345678230167845164028357725830461803754126387216504451602783576483210648571032
CF 2: 012345678230167845387206154405612783821754306164038527753820461576483210648571032
CF 3: 012345678120437865658104237507621384381572046846053712765810423234768150473286501
CF 4: 012345678230761854576280413485107326654823107728654031841532760103476582367018245
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4]
Multiset of vertices powers:
{1:4, 4:1}
22. Structure 5N4M5C
DLSs within combinatorial structure:
DLS 1: 012345678231684705768031452184576320657823041403157286845260137570412863326708514
DLS 2: 012345678845062137457623081631284705703158264580716342276431850324807516168570423
DLS 3: 012345678438570216671284305560712483245867130126038754384106527857623041703451862
DLS 4: 012345678574186320125860437358407216486031752867512043231674805703258164640723581
DLS 5: 012345678123758064348207156807623541534176820675481302760512483451860237286034715
Adjacency matrix:
01000
10100
01010
00101
00010
Different CFs set within combinatorial structure:
CF 1: 012345678231684705768031452184576320657823041403157286845260137570412863326708514
CF 2: 012345678127458036468123705871560423380716254635274180756801342243087561504632817
CF 3: 012345678126478035634507182581726340347851206805263417750614823278130564463082751
CF 4: 012345678127458036468173205871506423386210754635724180750861342243087561504632817
CF 5: 012345678123758064348207156807623541534176820675481302760512483451860237286034715
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2]
Multiset of vertices powers:
{1:2, 2:3}
23. Structure 5N4M5C
DLSs within combinatorial structure:
DLS 1: 012345678123708456487120365634582107358614720801476532570263814265837041746051283
DLS 2: 012345678645132807703286154420867315871053462587601243364520781136478520258714036
DLS 3: 012345678123708546487120365635482107358614720801576432570263814264837051746051283
DLS 4: 012345678163708542487120365235486107358614720801572436570263814624837051746051283
DLS 5: 012345678163708452487120365234586107358614720801472536570263814625837041746051283
Adjacency matrix:
01000
10111
01000
01000
01000
Different CFs set within combinatorial structure:
CF 1: 012345678123708456487120365634582107358614720801476532570263814265837041746051283
CF 2: 012345678123064857845736201456810732384672015567481320271503486730128564608257143
CF 3: 012345678123708546487120365635482107358614720801576432570263814264837051746051283
CF 4: 012345678123764850348276015681532407275810346407653182564108723830427561756081234
CF 5: 012345678123750846478562013754603182830416725681274350307821564265087431546138207
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4]
Multiset of vertices powers:
{1:4, 4:1}
24. Structure 5N4M5C
DLSs within combinatorial structure:
DLS 1: 012345678123457806247036581630582417405861723756108342584273160871624035368710254
DLS 2: 012345678261830745578264013843701562354627180687513204126058437430172856705486321
DLS 3: 012345678847623501385406127236154780401572836170268345563780214758031462624817053
DLS 4: 012345678134076852256134780571802364865213047428657103780521436643780521307468215
DLS 5: 012345678754036812267154380673802154835261047428713506180527463341680725506478231
Adjacency matrix:
01000
10100
01011
00100
00100
Different CFs set within combinatorial structure:
CF 1: 012345678123457806247036581630582417405861723756108342584273160871624035368710254
CF 2: 012345678124038765675180342581764203346812057837256410460573821258407136703621584
CF 3: 012345678124037856576180324681754230438516702743628015367402581805263147250871463
CF 4: 012345678120478563678102354361527480853610247786034125435861702547286031204753816
CF 5: 012345678123486705758162340835671024386750412670214583247038156564807231401523867
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 3]
Multiset of vertices powers:
{1:3, 2:1, 3:1}
25. Structure 5N5M5C
DLSs within combinatorial structure:
DLS 1: 012345678123678450587420316368512704851264037704183562640731825275806143436057281
DLS 2: 012345678374820516628153704851276340746038251587461023135602487403517862260784135
DLS 3: 012345678183076425257408316325610784601254837764183502846731250570862143438527061
DLS 4: 012345678780651432135804267264710853523467180346182705607528314851273046478036521
DLS 5: 012345678645782013403261785837104526754628301281576430570413862168037254326850147
Adjacency matrix:
01000
10110
01001
01001
00110
Different CFs set within combinatorial structure:
CF 1: 012345678123678450587420316368512704851264037704183562640731825275806143436057281
CF 2: 012345678123750864875264310780632145308416527436087251257108436641573082564821703
CF 3: 012345678123568047864752103507816234286430715631287450370124586458071362745603821
CF 4: 012345678123870564456732081708564123865413702370258416247186350631027845584601237
CF 5: 012345678124037856537268410480673521348510267865724103756801342603152784271486035
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 3]
Multiset of vertices powers:
{1:1, 2:3, 3:1}
26. Structure 5N6M3C
DLSs within combinatorial structure:
DLS 1: 012345678120468735456183207571824063307512846634057182845671320268730451783206514
DLS 2: 012345678257684301824567130340172856468730512185406723736018245673251084501823467
DLS 3: 012345678257684301824567130743102856468073512185436027306718245630251784571820463
DLS 4: 012345678120468735456183207275814063307251846634027581841672350568730412783506124
DLS 5: 012345678468207513173854062581436720634720185720581436257163804846072351305618247
Adjacency matrix:
01100
10010
10011
01101
00110
Different CFs set within combinatorial structure:
CF 1: 012345678120468735456183207571824063307512846634057182845671320268730451783206514
CF 2: 012345678120468735456183207275814063307251846634027581841672350568730412783506124
CF 3: 012345678124076853658123704467531280285760431731284065570812346843607512306458127
Ascending sorted vector of vertices powers:
[2, 2, 2, 3, 3]
Multiset of vertices powers:
{2:3, 3:2}
27. Structure 5N6M4C
DLSs within combinatorial structure:
DLS 1: 012345678120473856357861024834652107685214730201738465743106582568027341476580213
DLS 2: 012345678284037561675180243756213480340578126138406752821654307403762815567821034
DLS 3: 012345678284037561675180243756213480340678125138406752821564307403752816567821034
DLS 4: 012345678126473850357861024834652107685014732201738465743120586568207341470586213
DLS 5: 012345678120473856357861024834652107685014732201738465743126580568207341476580213
Adjacency matrix:
01100
10011
10011
01100
01100
Different CFs set within combinatorial structure:
CF 1: 012345678120473856357861024834652107685214730201738465743106582568027341476580213
CF 2: 012345678230486715825164037167823540654078321703251486486710253341507862578632104
CF 3: 012345678120476835367081452834567120685712043741238506456120387203854761578603214
CF 4: 012345678120473856357861024834652107685014732201738465743126580568207341476580213
Ascending sorted vector of vertices powers:
[2, 2, 2, 3, 3]
Multiset of vertices powers:
{2:3, 3:2}
28. Structure 5N6M5C
DLSs within combinatorial structure:
DLS 1: 012345678123578064368427510507684231654710382871253406480162753235806147746031825
DLS 2: 012345678645287130781630452874561023467123805328706541256078314103452786530814267
DLS 3: 012345678645217830781630452874561023467823105328706541256078314103452786530184267
DLS 4: 012345678123578064368427510507684231654710382471253806840162753235806147786031425
DLS 5: 012345678823501764368427501587614230654078312701253486470862153235186047146730825
Adjacency matrix:
01100
10011
10011
01100
01100
Different CFs set within combinatorial structure:
CF 1: 012345678123578064368427510507684231654710382871253406480162753235806147746031825
CF 2: 012345678123570846756028134574182063840637251368714502435861720201456387687203415
CF 3: 012345678123507846756028134574182063847630251368714502435861720201456387680273415
CF 4: 012345678123578064368427510507684231654710382471253806840162753235806147786031425
CF 5: 012345678120586743583471260658730124376214805407658312265807431834162057741023586
Ascending sorted vector of vertices powers:
[2, 2, 2, 3, 3]
Multiset of vertices powers:
{2:3, 3:2}
29. Structure 6N5M2C
DLSs within combinatorial structure:
DLS 1: 012345678123574860486032751245860137560713482638207514704158326857621043371486205
DLS 2: 012345678485067132857621043631284705703158264564713820276830451328406517140572386
DLS 3: 012345678851623704328406517560712483245867130786134052607281345134570826473058261
DLS 4: 012345678857620341641582730376401852428037516185276403730158264263714085504863127
DLS 5: 012345678730158264387601542845263107563712480628034715104576823476820351251487036
DLS 6: 012345678671284035184037526763512480245863107326108754857620341508476213430751862
Adjacency matrix:
010000
101100
010000
010011
000100
000100
Different CFs set within combinatorial structure:
CF 1: 012345678123574860486032751245860137560713482638207514704158326857621043371486205
CF 2: 012345678127058463438176205751630842680213754365724180873401526246587031504862317
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 3, 3]
Multiset of vertices powers:
{1:4, 3:2}
30. Structure 6N5M3C
DLSs within combinatorial structure:
DLS 1: 012345678120487536648731052837604215276150384504213867451068723365872140783526401
DLS 2: 012345678485632710271083465658470123367528041123706584846157302730214856504861237
DLS 3: 012345678137826405854607231726584310503471862648132057485760123261053784370218546
DLS 4: 012345678568204713781062354375410862247653081134728506856137240620871435403586127
DLS 5: 012345678230617845457820136764582301801764523528031764685203417173456280346178052
DLS 6: 012345678654082137148237065385604712526170384807513426431768250760821543273456801
Adjacency matrix:
010000
101000
010100
001010
000101
000010
Different CFs set within combinatorial structure:
CF 1: 012345678120487536648731052837604215276150384504213867451068723365872140783526401
CF 2: 012345678123850764734268501376512480581036247648127053267401835805674312450783126
CF 3: 012345678128457306756283410487136052604872135863504721341028567530761284275610843
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2]
Multiset of vertices powers:
{1:2, 2:4}
31. Structure 6N5M3C
DLSs within combinatorial structure:
DLS 1: 012345678120768435354872061875621340641057283786213504237104856568430712403586127
DLS 2: 012345678781026543543210786468573012370862451834157260625438107107684325256701834
DLS 3: 012345678120768435354871062871652340645017283786523104537104826268430751403286517
DLS 4: 012345678320768415654871032876152340145037286783526104537604821268410753401283567
DLS 5: 012345678681027543543210786458763012370852461834176250726438105105684327267501834
DLS 6: 012345678783026541546210783468571032170832456834657210325468107607184325251703864
Adjacency matrix:
010000
101100
010011
010000
001000
001000
Different CFs set within combinatorial structure:
CF 1: 012345678120768435354872061875621340641057283786213504237104856568430712403586127
CF 2: 012345678120768435354871062871652340645017283786523104537104826268430751403286517
CF 3: 012345678123867054376528410438706521854631702680154237567280143705412386241073865
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 3, 3]
Multiset of vertices powers:
{1:4, 3:2}
32. Structure 6N5M5C
DLSs within combinatorial structure:
DLS 1: 012345678231784560756410283520867134408653712687021345873206451345178026164532807
DLS 2: 012345678843106257507861432465210783126437805354678021731082564678524310280753146
DLS 3: 012345678231784560756410283520867134478653012687021345803276451345108726164532807
DLS 4: 012345678231784560756418203520867134408653712687021345873206451345170826164532087
DLS 5: 012345678238714560756480213520867134401653782687021345873206451345178026164532807
DLS 6: 012345678238714560756480213520867134471653082687021345803276451345108726164532807
Adjacency matrix:
010000
101111
010000
010000
010000
010000
Different CFs set within combinatorial structure:
CF 1: 012345678231784560756410283520867134408653712687021345873206451345178026164532807
CF 2: 012345678123586740608172534567431082281063457435207861750814326874650213346728105
CF 3: 012345678230784516851273460546827031367451802478036125783160254125608743604512387
CF 4: 012345678231784560756418203520867134408653712687021345873206451345170826164532087
CF 5: 012345678230784516851273460546817032367452801478036125783160254125608743604521387
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 5]
Multiset of vertices powers:
{1:5, 5:1}
33. Structure 6N5M5C
DLSs within combinatorial structure:
DLS 1: 012345678123086547458721036587402163375168402260573814641830725834617250706254381
DLS 2: 012345678471538062785162304106284735843617520354706281230471856628053147567820413
DLS 3: 012345678863024751328417065280536417506871243741253806654780132437168520175602384
DLS 4: 012345678471853062703162584156284703845617320584706231230471856628530147367028415
DLS 5: 012345678671853024403126587157684203845217360586702431230471856768530142324068715
DLS 6: 012345678671538024485126307107684235843217560356702481230471856768053142524860713
Adjacency matrix:
010000
101000
010111
001000
001000
001000
Different CFs set within combinatorial structure:
CF 1: 012345678123086547458721036587402163375168402260573814641830725834617250706254381
CF 2: 012345678123058764658417032584632107206871543740523816361780425837164250475206381
CF 3: 012345678123086547465832710648173205730268451384517026871450362507624183256701834
CF 4: 012345678120473865648731052837612540206854137485167203754206381573028416361580724
CF 5: 012345678124078563648157032853761240286430157507216384735682401370524816461803725
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 4]
Multiset of vertices powers:
{1:4, 2:1, 4:1}
34. Structure 6N5M6C
DLSs within combinatorial structure:
DLS 1: 012345678230467815781654302478536120165273084643028751854701263326180547507812436
DLS 2: 012345678845610327126807534367284051578132460250761843431528706703456182684073215
DLS 3: 012345678648501327573826041736184502820467153105732864481250736257613480364078215
DLS 4: 012345678263458701658137420845273016486710532371604285107582364724061853530826147
DLS 5: 012345678125783460657418302480637125736852041578104236364021857803276514241560783
DLS 6: 012345678834567120781254036470631582165873204603482751546720813258106347327018465
Adjacency matrix:
011000
100000
100110
001001
001000
000100
Different CFs set within combinatorial structure:
CF 1: 012345678230467815781654302478536120165273084643028751854701263326180547507812436
CF 2: 012345678123786045586102734341870562758613420867254103475021386230467851604538217
CF 3: 012345678120586743673450182407823516564178320785061234836702451358214067241637805
CF 4: 012345678127458036638210745460731852751064283846573120374826501503682417285107364
CF 5: 012345678123587460637814502378401256756238041480756123564120837805672314241063785
CF 6: 012345678123658704675820431758401362481067253846573120307216845534782016260134587
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 2, 3]
Multiset of vertices powers:
{1:3, 2:2, 3:1}
35. Structure 6N5M6C
DLSs within combinatorial structure:
DLS 1: 012345678123786045867451230405637812758012463284563701340178526536204187671820354
DLS 2: 012345678760534821631720485524816037287453106856072314403681752375168240148207563
DLS 3: 012345678485613702307568124756102483140237865621784530834056217268470351573821046
DLS 4: 012345678485613702307568124256107483140732865671284530834056217768420351523871046
DLS 5: 012345678584163702307618524756402183460237851125786430831054267248570316673821045
DLS 6: 012345678584163702307618524256407183460732851175286430831054267748520316623871045
Adjacency matrix:
010000
101111
010000
010000
010000
010000
Different CFs set within combinatorial structure:
CF 1: 012345678123786045867451230405637812758012463284563701340178526536204187671820354
CF 2: 012345678126073854468510237537604182784231065305187426840762513271856340653428701
CF 3: 012345678123478056481520763865704132540637821354186207736852410607213584278061345
CF 4: 012345678120468537586730421453187062874253106738604215341826750607512384265071843
CF 5: 012345678126478035684702513703514826840163752358027164561280347475631280237856401
CF 6: 012345678123678504708564132657102843465237081834756210376810425241083756580421367
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 5]
Multiset of vertices powers:
{1:5, 5:1}
36. Structure 6N5M6C
DLSs within combinatorial structure:
DLS 1: 012345678123806547471058263307681425564270381748563012250417836836124750685732104
DLS 2: 012345678786014235564832701238570164870126543321687450405761382643258017157403826
DLS 3: 012345678657431802108256437324687510735814026476502381583120764861073245240768153
DLS 4: 012345678128536047431708265750681423364257801847063512283410756576124380605872134
DLS 5: 012345678463528017341082765856734102274650381108273546720416853537861420685107234
DLS 6: 012345678465082317841530762286704135374658201108273546720416853537861420653127084
Adjacency matrix:
010000
101100
010011
010000
001000
001000
Different CFs set within combinatorial structure:
CF 1: 012345678123806547471058263307681425564270381748563012250417836836124750685732104
CF 2: 012345678123870564408657231560423187687514320274036815835102746341768052756281403
CF 3: 012345678124578036576130284635481720467853102803627451350214867248706315781062543
CF 4: 012345678123584067607218435865432701346750812578163240480627153231076584754801326
CF 5: 012345678124038765786154023651872340208613457463587201837460512540721836375206184
CF 6: 012345678123507846346058712470863521238710465567234180785621304801476253654182037
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 3, 3]
Multiset of vertices powers:
{1:4, 3:2}
37. Structure 6N5M6C
DLSs within combinatorial structure:
DLS 1: 012345678120436857358724106487562013863170245746081532574618320235807461601253784
DLS 2: 012345678281057364746801532625783401534618720350274186867130245103462857478526013
DLS 3: 012345678120476853358724106483562017867130245746081532534618720275803461601257384
DLS 4: 012345678420176853358724106183562047867430215746081532534618720275803461601257384
DLS 5: 012345678420136857358724106187562043863470215746081532574618320235807461601253784
DLS 6: 012345678781052364246801537625783401534618720350274186867130245103467852478526013
Adjacency matrix:
010000
101110
010001
010000
010000
001000
Different CFs set within combinatorial structure:
CF 1: 012345678120436857358724106487562013863170245746081532574618320235807461601253784
CF 2: 012345678123706845507481362364852710430168257675024183841273506258617034786530421
CF 3: 012345678120437865476850132385162407853671024647028351704213586231586740568704213
CF 4: 012345678120437865476850132385162407853671024647028351704283516238516740561704283
CF 5: 012345678120437865476850132385162407853671024647028351204783516738516240561204783
CF 6: 012345678123568047564871302387610254248056713456237180731402865870124536605783421
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 4]
Multiset of vertices powers:
{1:4, 2:1, 4:1}
38. Structure 6N6M1C
DLSs within combinatorial structure:
DLS 1: 012345678123708465864150327641527830736814052358276104285031746507463281470682513
DLS 2: 012345678567281340208467513123756084845620137684013725371508462430172856756834201
DLS 3: 012345678378624501123786450786402315804251736560138247457860123235017864641573082
DLS 4: 012345678840127563687032154236870415374256801568701342753614280125468037401583726
DLS 5: 012345678731268054285407361528671403647023185803714526170536842364852710456180237
DLS 6: 012345678183570426746158032401236587820614753235487160567821304658703241374062815
Adjacency matrix:
011000
100100
100010
010001
001001
000110
Different CFs set within combinatorial structure:
CF 1: 012345678123708465864150327641527830736814052358276104285031746507463281470682513
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2]
Multiset of vertices powers:
{2:6}
39. Structure 6N6M3C
DLSs within combinatorial structure:
DLS 1: 012345678123067845576231084685402713248176530734528106451680327860713452307854261
DLS 2: 012345678356128407627480513571836024860714352405273861184067235238651740743502186
DLS 3: 012345678184067235573804162468250713635471820720516384356128407841732056207683541
DLS 4: 012345678184067235573804162465280713638471520720516384356128407841732056207653841
DLS 5: 012345678356128407627480513571806324863714052405273861184067235238651740740532186
DLS 6: 012345678340128567408756213571684302853217046287063451165802734634571820726430185
Adjacency matrix:
010000
101100
010011
010010
001100
001000
Different CFs set within combinatorial structure:
CF 1: 012345678123067845576231084685402713248176530734528106451680327860713452307854261
CF 2: 012345678120478536568013427473681250734852061856207314347560182201736845685124703
CF 3: 012345678123806754765218340438751026840563217657024831384672105576130482201487563
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 3, 3]
Multiset of vertices powers:
{1:2, 2:2, 3:2}
40. Structure 6N6M4C
DLSs within combinatorial structure:
DLS 1: 012345678120476835356824017873162450607251384234718506541083762768530241485607123
DLS 2: 012345678731268540547081362256837014160524837423106785385710426804672153678453201
DLS 3: 012345678731268540547081362256817034360524817423106785185730426804672153678453201
DLS 4: 012345678120476835356824017673182450807251364234718506541063782768530241485607123
DLS 5: 012345678731268540247081365526837014160524837453106782385710426804672153678453201
DLS 6: 012345678731268540247081365526817034360524817453106782185730426804672153678453201
Adjacency matrix:
011000
100100
100100
011011
000100
000100
Different CFs set within combinatorial structure:
CF 1: 012345678120476835356824017873162450607251384234718506541083762768530241485607123
CF 2: 012345678123760854546281307857126043684073521375408162731652480408517236260834715
CF 3: 012345678120476835356824017673182450807251364234718506541063782768530241485607123
CF 4: 012345678123670854547281306856127043784063521375408162631752480408516237260834715
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 4]
Multiset of vertices powers:
{1:2, 2:3, 4:1}
41. Structure 6N6M5C
DLSs within combinatorial structure:
DLS 1: 012345678120457836354186720567810243873264051706523184431078562648702315285631407
DLS 2: 012345678361820457847501236653184720784036512438752061576213804205678143120467385
DLS 3: 012345678528417036374286510867502143253164807186073254431820765640751382705638421
DLS 4: 012345678528417036354186720867501243173264805786023514435870162640752381201638457
DLS 5: 012345678128457036354186720867501243573264801786023514435870162640712385201638457
DLS 6: 012345678361870452847501236653184720284036517438752061576213804705628143120467385
Adjacency matrix:
010000
101110
010000
010001
010001
000110
Different CFs set within combinatorial structure:
CF 1: 012345678120457836354186720567810243873264051706523184431078562648702315285631407
CF 2: 012345678123786045768524310435670182207418536681253704356807421874061253540132867
CF 3: 012345678120486753683150427764801532245078316537264801456723180801537264378612045
CF 4: 012345678123874056354768201248610537580136742605487123471253860867502314736021485
CF 5: 012345678123786045768524310437650182205418736681273504356807421874061253540132867
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 4]
Multiset of vertices powers:
{1:2, 2:3, 4:1}
42. Structure 6N6M6C
DLSs within combinatorial structure:
DLS 1: 012345678123806754804561237256710483567134802375628041431287560648072315780453126
DLS 2: 012345678231487560756210483504862137480753216648071325823106754375628041167534802
DLS 3: 012345678261487530753210486504832167480756213648071325826103754375628041137564802
DLS 4: 012345678231487560756218403504862137480753216648071325823106754375620841167534082
DLS 5: 012345678261487530753218406504832167480756213648071325826103754375620841137564082
DLS 6: 012345678123806754804571236257610483576134802365728041431287560748062315680453127
Adjacency matrix:
011110
100001
100000
100001
100000
010100
Different CFs set within combinatorial structure:
CF 1: 012345678123806754804561237256710483567134802375628041431287560648072315780453126
CF 2: 012345678123486750504861237486750123267534081375618402831207564648072315750123846
CF 3: 012345678123486750504871236487650123276534081365718402831207564748062315650123847
CF 4: 012345678123706854678012345267581430534867201801234567450123786345678012786450123
CF 5: 012345678123407856476581230245760183681234705357128064834076512560812347708653421
CF 6: 012345678123486750564801237486750123270534861357618042831267504648072315705123486
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 4]
Multiset of vertices powers:
{1:2, 2:3, 4:1}
43. Structure 6N6M6C
DLSs within combinatorial structure:
DLS 1: 012345678120483765734562180367104852548671023675038214483726501856210437201857346
DLS 2: 012345678865037124658173402403216587271850346586724031320481765734568210147602853
DLS 3: 012345678865017324658173402401236587273850146586724031320481765734568210147602853
DLS 4: 012345678128403765734562180367184052540671823675038214483726501856210437201857346
DLS 5: 012345678128403765734562180367184052580671423675038214843726501456210837201857346
DLS 6: 012345678865037124658170432403216587271853046586724301320481765734568210147602853
Adjacency matrix:
011000
100110
100100
011001
010000
000100
Different CFs set within combinatorial structure:
CF 1: 012345678120483765734562180367104852548671023675038214483726501856210437201857346
CF 2: 012345678120437865657183042201864537546710283378256401485672310834021756763508124
CF 3: 012345678120457863483761205346870512578213046201586437654038721837624150765102384
CF 4: 012345678123086745245608317468751032734860521671234850857423106306517284580172463
CF 5: 012345678123086745245608317864751032738460521671234850457823106306517284580172463
CF 6: 012345678120457863463781052375802416847613520201576384654028731538260147786134205
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 3, 3]
Multiset of vertices powers:
{1:2, 2:2, 3:2}
44. Structure 6N7M2C
DLSs within combinatorial structure:
DLS 1: 012345678123684507504876321658701432746258013871463250487032165365120784230517846
DLS 2: 012345678364708125435261087207486351128073546680152734753614802846537210571820463
DLS 3: 012345678364078125435261780273486051128730546687152304750614832846507213501823467
DLS 4: 012345678523681407104876325658704132746218053871563240487032561365120784230457816
DLS 5: 012345678523086417164870325658714032740268153871503246487132560305621784236457801
DLS 6: 012345678364108725435267081206481357128073546780652134653714802847536210571820463
Adjacency matrix:
011000
100110
100100
011001
010001
000110
Different CFs set within combinatorial structure:
CF 1: 012345678123684507504876321658701432746258013871463250487032165365120784230517846
CF 2: 012345678127638405483062157876423510708154263645781032354806721561270384230517846
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 3]
Multiset of vertices powers:
{2:4, 3:2}
45. Structure 6N7M3C
DLSs within combinatorial structure:
DLS 1: 012345678123684750375168042507816234486532107834207516651720483248071365760453821
DLS 2: 012345678736508214148072365623750481361427850450681723204816537875163042587234106
DLS 3: 012345678736208415158072364643720581361457820420681753504816237875163042287534106
DLS 4: 012345678736208514148072365653720481361457820420681753504816237875163042287534106
DLS 5: 012345678120684753375168042507816234486532107834207516651723480248071365763450821
DLS 6: 012345678123684750375168042507816234486532107854207316631720485248071563760453821
Adjacency matrix:
011100
100010
100001
100011
010100
001100
Different CFs set within combinatorial structure:
CF 1: 012345678123684750375168042507816234486532107834207516651720483248071365760453821
CF 2: 012345678120486735573861042854702316486253107307618254631527480248170563765034821
CF 3: 012345678123684750375168042507816234486532107854207316631720485248071563760453821
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 3]
Multiset of vertices powers:
{2:4, 3:2}
46. Structure 6N7M6C
DLSs within combinatorial structure:
DLS 1: 012345678120567843574638210806713425638152704485026137241870356367401582753284061
DLS 2: 012345678731820465245713086584602713860274351376481502623157840458036127107568234
DLS 3: 012345678735820164241753086483602751860271543576184302624517830158036427307468215
DLS 4: 012345678735820461241753086183602754860271543576184302624517830458036127307468215
DLS 5: 012345678426517803571038264840763125138652740685124037204876351367401582753280416
DLS 6: 012345678120567843574638210846713025638152704485026137201874356367401582753280461
Adjacency matrix:
011100
100011
100001
100001
010000
011100
Different CFs set within combinatorial structure:
CF 1: 012345678120567843574638210806713425638152704485026137241870356367401582753284061
CF 2: 012345678123408765657014382548127036380651427834276510261730854705863241476582103
CF 3: 012345678120486357605874132538712046751260483847053261264137805473628510386501724
CF 4: 012345678123564807681270534570826341456738120364107285837051462748612053205483716
CF 5: 012345678123567840658403127485672013764150382840731256236814705507286431371028564
CF 6: 012345678120567843358416027485672130764051382846703251201834765537280416673128504
Ascending sorted vector of vertices powers:
[1, 2, 2, 3, 3, 3]
Multiset of vertices powers:
{1:1, 2:2, 3:3}
47. Structure 6N7M6C
DLSs within combinatorial structure:
DLS 1: 012345678123758064586023417740831526431672805657284130875160342208416753364507281
DLS 2: 012345678258614703374560281401276835160837524725108346687423150843751062536082417
DLS 3: 012345678258614703374560281401276835165837024720158346687423150843701562536082417
DLS 4: 012345678123758064586023417740831526438672105657214830875160342201486753364507281
DLS 5: 012345678123758064586023417740831526834672105657214830475160382201486753368507241
DLS 6: 012345678258614703374560281401276835165837420720158346687023154843701562536482017
Adjacency matrix:
011000
100100
100110
011001
001001
000110
Different CFs set within combinatorial structure:
CF 1: 012345678123758064586023417740831526431672805657284130875160342208416753364507281
CF 2: 012345678120476853568204731734561280471830562685017324356182407847623015203758146
CF 3: 012345678120476835534812067483627510768053421876201354201538746345760182657184203
CF 4: 012345678123750864376812540467183052845076213750468321581237406608524137234601785
CF 5: 012345678123750864376812540647183052865074213750468321581237406408526137234601785
CF 6: 012345678120476835534812067483627501768153420876201354201538746345760182657084213
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 3]
Multiset of vertices powers:
{2:4, 3:2}
48. Structure 6N7M6C
DLSs within combinatorial structure:
DLS 1: 012345678123804756784061235847536012675210843306758421560172384231487560458623107
DLS 2: 012345678435280167356728401678413520840572316764031285201657843123806754587164032
DLS 3: 012345678435287160356728401608413527840572316764031285271650843123806754587164032
DLS 4: 012345678623804751784016235847531062175260843301758426560172384236487510458623107
DLS 5: 012345678823104756784061235147536082675210843306758421560872314231487560458623107
DLS 6: 012345678823104756184067235741536082675210843306758421560872314237481560458623107
Adjacency matrix:
011000
100111
100011
010000
011000
011000
Different CFs set within combinatorial structure:
CF 1: 012345678123804756784061235847536012675210843306758421560172384231487560458623107
CF 2: 012345678124678350735481062651823704380264517406137285867510423548702136273056841
CF 3: 012345678124768350735481062651823704380274516407136285876510423548602137263057841
CF 4: 012345678123704856735286140561872034640531782384067215856123407278410563407658321
CF 5: 012345678128473065734056281853607124681534702367128450470281536245760813506812347
CF 6: 012345678124078536863102754475680123386751402750264381531427860247836015608513247
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 3, 4]
Multiset of vertices powers:
{1:1, 2:3, 3:1, 4:1}
49. Structure 6N8M2C
DLSs within combinatorial structure:
DLS 1: 012345678123486750358167204687521043864073125705614832240758361536802417471230586
DLS 2: 012345678571638204836074152140286735208157346387421560653810427425763081764502813
DLS 3: 012345678571628304836074152140286735308157246287431560653810427425763081764502813
DLS 4: 012345678840516723468127530287651304153470862725083146304768251536802417671234085
DLS 5: 012345678140586723468127530287651304853470162725013846304768251536802417671234085
DLS 6: 012345678823416750358167204687521043164073825705684132240758361536802417471230586
Adjacency matrix:
011000
100111
100111
011000
011000
011000
Different CFs set within combinatorial structure:
CF 1: 012345678123486750358167204687521043864073125705614832240758361536802417471230586
CF 2: 012345678120468357457106283236851740801637425765084132384720516578213064643572801
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4]
Multiset of vertices powers:
{2:4, 4:2}
50. Structure 6N8M3C
DLSs within combinatorial structure:
DLS 1: 012345678120678534745136082301857246638412705874263150586720413257084361463501827
DLS 2: 012345678278456301134687250650174823547831062386502714801263547463720185725018436
DLS 3: 012345678758426301134687250675104823240831567386752014821063745463570182507218436
DLS 4: 012345678120678534745136082301857246638410725874263150586702413257084361463521807
DLS 5: 012345678120678543745136082401857236638410725873264150586702314257083461364521807
DLS 6: 012345678120678543745136082401857236638412705873264150586720314257083461364501827
Adjacency matrix:
011000
100111
100111
011000
011000
011000
Different CFs set within combinatorial structure:
CF 1: 012345678120678534745136082301857246638412705874263150586720413257084361463501827
CF 2: 012345678230587416841703265126834057764251803358076142503462781475618320687120534
CF 3: 012345678120678534745136082301857246638410725874263150586702413257084361463521807
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4]
Multiset of vertices powers:
{2:4, 4:2}
51. Structure 6N8M3C
DLSs within combinatorial structure:
DLS 1: 012345678120567843487653201673401582201836457345028716536780124854172360768214035
DLS 2: 012345678467182305258736410104527863583210746830674152675403281726851034341068527
DLS 3: 012345678735608124176420583251836740648571032564182307823067415307214856480753261
DLS 4: 012345678358714260763508124825160437476023581681437052247651803130286745504872316
DLS 5: 012345678358714260763208154825160437476023581681437025247651803130586742504872316
DLS 6: 012345678467182305258716430304527861581230746830674152675401283726853014143068527
Adjacency matrix:
011110
101010
110011
100000
111000
001000
Different CFs set within combinatorial structure:
CF 1: 012345678120567843487653201673401582201836457345028716536780124854172360768214035
CF 2: 012345678120586743386721504758462310465870132874103265543017826201638457637254081
CF 3: 012345678120586743386721504758462310465870132847103265573014826201638457634257081
Ascending sorted vector of vertices powers:
[1, 1, 3, 3, 4, 4]
Multiset of vertices powers:
{1:2, 3:2, 4:2}
52. Structure 6N8M4C
DLSs within combinatorial structure:
DLS 1: 012345678123458706857206134386524017570862341408731562765183420634017285241670853
DLS 2: 012345678786530412463781520528413706205174863837206145150867234341628057674052381
DLS 3: 012345678786520413463781520528413706305174862837206145150867234241638057674052381
DLS 4: 012345678128453706857206134386524017570862341403781562765138420634017285241670853
DLS 5: 012345678523418706857206134386524017170862345408731562765183420634057281241670853
DLS 6: 012345678528413706857206134386524017170862345403781562765138420634057281241670853
Adjacency matrix:
011000
100111
100111
011000
011000
011000
Different CFs set within combinatorial structure:
CF 1: 012345678123458706857206134386524017570862341408731562765183420634017285241670853
CF 2: 012345678123786054645078312564831207207564831831207465780453126378612540456120783
CF 3: 012345678123786054645078312564801237237564801801237465780453126378612540456120783
CF 4: 012345678123608754534187260275810346487261035856723401761034582640572813308456127
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4]
Multiset of vertices powers:
{2:4, 4:2}
53. Structure 6N8M5C
DLSs within combinatorial structure:
DLS 1: 012345678123756804654238710861504327570863241348127065705482136437610582286071453
DLS 2: 012345678647128053275081436734610582803472165486253710521736804168504327350867241
DLS 3: 012345678647182053875021436734610582203478165486253710521736804168504327350867241
DLS 4: 012345678123756804654238710861504327570863241308127465745082136437610582286471053
DLS 5: 012345678173256804654738210861504327520863741308172465245087136437610582786421053
DLS 6: 012345678173256804654738210861504327520863741348172065205487136437610582786021453
Adjacency matrix:
011000
100111
100111
011000
011000
011000
Different CFs set within combinatorial structure:
CF 1: 012345678123756804654238710861504327570863241348127065705482136437610582286071453
CF 2: 012345678120476853378514026605182437547061382864753210251830764736208541483627105
CF 3: 012345678123780546548206713461573280670412835837624051785061324304857162256138407
CF 4: 012345678123756804654238710861504327570863241308127465745082136437610582286471053
CF 5: 012345678123807546756128034504782163285630417367514280431276805870461352648053721
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4]
Multiset of vertices powers:
{2:4, 4:2}
54. Structure 6N8M6C
DLSs within combinatorial structure:
DLS 1: 012345678124637805603281457851763024378056241786124530437508162560412783245870316
DLS 2: 012345678781564032164753280438201765253178406827036154306487521645820317570612843
DLS 3: 012345678781524036164753280438201765653178402827036154306487521245860317570612843
DLS 4: 012345678781564032164753280438201765253478106827036451306187524645820317570612843
DLS 5: 012345678781524036164753280438201765653478102827036451306187524245860317570612843
DLS 6: 012345678324617805603281457851763024178056243786124530437508162560432781245870316
Adjacency matrix:
011110
100001
100001
100001
100001
011110
Different CFs set within combinatorial structure:
CF 1: 012345678124637805603281457851763024378056241786124530437508162560412783245870316
CF 2: 012345678123607845504182736286710453760534182345268017431876520857021364678453201
CF 3: 012345678123607854405182736286710543760534182354268017531876420847021365678453201
CF 4: 012345678123708456587064231406851723264137580358426017730582164875610342641273805
CF 5: 012345678123708456567084231406851723284137560358426017730562184875610342641273805
CF 6: 012345678123458706751836420406781352578263041380524167867102534634017285245670813
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4]
Multiset of vertices powers:
{2:4, 4:2}
55. Structure 6N8M6C
DLSs within combinatorial structure:
DLS 1: 012345678120478536758063421586720143634812057301654782465287310873501264247136805
DLS 2: 012345678341726805507634182130862457286150743658473021873501264465287310724018536
DLS 3: 012345678241736805507624183130862457386150742658473021873501264465287310724018536
DLS 4: 012345678341726805527634180130862457286150743658473021873501264465087312704218536
DLS 5: 012345678120468537658073421586720143734812056301654782465287310873501264247136805
DLS 6: 012345678724018536358761204586130742630872451207654183465287310841523067173406825
Adjacency matrix:
011100
100011
100010
100011
011100
010100
Different CFs set within combinatorial structure:
CF 1: 012345678120478536758063421586720143634812057301654782465287310873501264247136805
CF 2: 012345678120476835873602154685127403734850261568014327456283710347561082201738546
CF 3: 012345678123407856735086421584673102256714083471238560867520314308162745640851237
CF 4: 012345678123507846734086521845673102256714083571238460467820315308162754680451237
CF 5: 012345678120468537658073421586720143734812056301654782465287310873501264247136805
CF 6: 012345678123706845601483257765830421584062713248157360437218506850674132376521084
Ascending sorted vector of vertices powers:
[2, 2, 3, 3, 3, 3]
Multiset of vertices powers:
{2:2, 3:4}
56. Structure 6N9M3C
DLSs within combinatorial structure:
DLS 1: 012345678123078546645832701867150324584763210738214065271406853450687132306521487
DLS 2: 012345678670214835751683042238406157306527481423158706867031524145872360584760213
DLS 3: 012345678460217835751483062238704156307526481623158704846031527175862340584670213
DLS 4: 012345678470216835751483062238604157306527481623158704847031526165872340584760213
DLS 5: 012345678143078526625831704867150342584763210738412065471206853250687431306524187
DLS 6: 012345678143078526625834701867150342584763210738412065471206853250687134306521487
Adjacency matrix:
011100
100011
100011
100011
011100
011100
Different CFs set within combinatorial structure:
CF 1: 012345678123078546645832701867150324584763210738214065271406853450687132306521487
CF 2: 012345678123806754375680142640152837501473286754068321286731405837214560468527013
CF 3: 012345678123807564761453280876534012654078321408126735340612857235780146587261403
Ascending sorted vector of vertices powers:
[3, 3, 3, 3, 3, 3]
Multiset of vertices powers:
{3:6}
57. Structure 6N9M4C
DLSs within combinatorial structure:
DLS 1: 012345678123078564468701325256430187687513042571286430835124706340867251704652813
DLS 2: 012345678341687250523016487784253061106472835635128704470861523867504312258730146
DLS 3: 012345678341780256523617480784253061170462835635128704467801523806574312258036147
DLS 4: 012345678834256701257860143128674530741028356463501827506783412675132084380417265
DLS 5: 012345678123078564468703125256410387687531042570286413805124736341867250734652801
DLS 6: 012345678834526701257860143108674235741058326463201857526783410670132584385417062
Adjacency matrix:
011100
100111
100111
111000
011000
011000
Different CFs set within combinatorial structure:
CF 1: 012345678123078564468701325256430187687513042571286430835124706340867251704652813
CF 2: 012345678143607825365182740680754132407218356728036514856473201231560487574821063
CF 3: 012345678143607825365082714681750432407218356728436501856173240234561087570824163
CF 4: 012345678123078564468703125256410387687531042570286413805124736341867250734652801
Ascending sorted vector of vertices powers:
[2, 2, 3, 3, 4, 4]
Multiset of vertices powers:
{2:2, 3:2, 4:2}
58. Structure 6N15M1C
DLSs within combinatorial structure:
DLS 1: 012345678235476801824153760780634152648510327401287536576801243153762084367028415
DLS 2: 012345678460182753537861042126503487304728516875614320251037864648270135783456201
DLS 3: 012345678523817046786504231648150723271436805350728164835672410467081352104263587
DLS 4: 012345678846721530453680127561872304780154263127036485304268751275403816638517042
DLS 5: 012345678374608215608712354435287061157063482263451807780124536821536740546870123
DLS 6: 012345678781250364165027483857461230536872041648503712423786105304618527270134856
Adjacency matrix:
011111
101111
110111
111011
111101
111110
Different CFs set within combinatorial structure:
CF 1: 012345678235476801824153760780634152648510327401287536576801243153762084367028415
Ascending sorted vector of vertices powers:
[5, 5, 5, 5, 5, 5]
Multiset of vertices powers:
{5:6}
59. Structure 7N6M5C
DLSs within combinatorial structure:
DLS 1: 012345678123467850704581236365820741576134082480756123231078564847602315658213407
DLS 2: 012345678348672015675018342153786420780423156834561207567204831201837564426150783
DLS 3: 012345678783561420207854136364170582456238017120486753835017264578602341641723805
DLS 4: 012345678526704831483250167847132056371568420268017345634871502150426783705683214
DLS 5: 012345678826704531483250167745132086351867420267018345634581702170426853508673214
DLS 6: 012345678760254831483507126245160387651872403307618542874031265126483750538726014
DLS 7: 012345678730254861486507123245163087651872430367018542874631205123480756508726314
Adjacency matrix:
0100000
1011111
0100000
0100000
0100000
0100000
0100000
Different CFs set within combinatorial structure:
CF 1: 012345678123467850704581236365820741576134082480756123231078564847602315658213407
CF 2: 012345678123486750645078312537864201378612045450723186786150423801237564264501837
CF 3: 012345678123468750264581037301752864786034125875106243437820516540617382658273401
CF 4: 012345678120487356354068712738650421867132045475201863201876534546723180683514207
CF 5: 012345678120568734368054217684730125546217803205673481837401562751826340473182056
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 6]
Multiset of vertices powers:
{1:6, 6:1}
60. Structure 7N6M6C
DLSs within combinatorial structure:
DLS 1: 012345678123086547435812760748153206370268415684537021861470352507624183256701834
DLS 2: 012345678785264301621053487273481065854627130348706512106538724430172856567810243
DLS 3: 012345678785264301127053486263487015854621730378106542406538127630712854541870263
DLS 4: 012345678785264301621530487270481563834627150543706812106853724458172036367018245
DLS 5: 012345678785264301127530486260487513834621750573106842406853127658712034341078265
DLS 6: 012345678654218730723480516285706143138627054506174382340561827871032465467853201
DLS 7: 012345678164058723875621340328704165546812037781563204237180456403276581650437812
Adjacency matrix:
0111110
1000000
1000000
1000000
1000001
1000000
0000100
Different CFs set within combinatorial structure:
CF 1: 012345678123086547435812760748153206370268415684537021861470352507624183256701834
CF 2: 012345678123058764564780123781632405306871542648523017250417836837164250475206381
CF 3: 012345678120473865658137042385761204236054187847216530703682451574820316461508723
CF 4: 012345678124078563638751042587612304256430187843167250705286431370524816461803725
CF 5: 012345678124568703837650241546817320405736812263471085781024536358102467670283154
CF 6: 012345678123608547458721036567482103385067412270513864641830725834176250706254381
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 2, 5]
Multiset of vertices powers:
{1:5, 2:1, 5:1}
61. Structure 7N6M7C
DLSs within combinatorial structure:
DLS 1: 012345678126587430345078216763854102801762354254103867430621785678210543587436021
DLS 2: 012345678864153207687420531108267453420531786735684120351702864543876012276018345
DLS 3: 012345678126587430345078216763854102801462357257103864430621785678210543584736021
DLS 4: 012345678136587420245078316763854102801763254354102867420631785678210543587426031
DLS 5: 012345678136587420245078316763854102801463257357102864420631785678210543584726031
DLS 6: 012345678128567430543078216765834102301752864284106357430621785876210543657483021
DLS 7: 012345678128567430543078216765834102301452867287106354430621785876210543654783021
Adjacency matrix:
0100000
1011111
0100000
0100000
0100000
0100000
0100000
Different CFs set within combinatorial structure:
CF 1: 012345678126587430345078216763854102801762354254103867430621785678210543587436021
CF 2: 012345678123584706578260314785602431236417085461753820304871562857026143640138257
CF 3: 012345678123784065746530281681453702837216540365078124254807316470621853508162437
CF 4: 012345678123708465674021583536810247287534106805276314451682730348167052760453821
CF 5: 012345678123058764376810245284507136607431582758164023460723851845276310531682407
CF 6: 012345678123486750581073246375624801467538012238107564856710423604251387740862135
CF 7: 012345678123480756405861237268734501387612045654078312876153420531207864740526183
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 6]
Multiset of vertices powers:
{1:6, 6:1}
62. Structure 7N6M7C
DLSs within combinatorial structure:
DLS 1: 012345678230176854784530162548702316125863047653481720867054231401627583376218405
DLS 2: 012345678876253410421768053250837164364520781138674205683102547745016832507481326
DLS 3: 012345678165870324837106542521463087746018235380752461254637810403281756678524103
DLS 4: 012345678653781042381524706430672815278430561527068134705216483864157320146803257
DLS 5: 012345678427018563168734205843670152680257314235461780701583426574826031356102847
DLS 6: 012345678824037516176480325683714250760258143358621407547103862405862731231576084
DLS 7: 012345678381652407853027146408163725265478031740586312574801263126734850637210584
Adjacency matrix:
0100000
1010000
0101100
0010010
0010001
0001000
0000100
Different CFs set within combinatorial structure:
CF 1: 012345678230176854784530162548702316125863047653481720867054231401627583376218405
CF 2: 012345678120678543358027164461750832286431057547206381705813426873564210634182705
CF 3: 012345678123870564658237410560423187746018235384756021835102746407681352271564803
CF 4: 012345678123607845354260781685713024761854230437128506846032157508471362270586413
CF 5: 012345678128057436476180523651734280835412067340628751587206314703561842264873105
CF 6: 012345678120678354358204167765410832871032546534726081406851723643587210287163405
CF 7: 012345678123678450807456312368512704281064537754103286640731825576280143435827061
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 2, 2, 3]
Multiset of vertices powers:
{1:3, 2:3, 3:1}
63. Structure 7N6M7C
DLSs within combinatorial structure:
DLS 1: 012345678123506847586274031867152304248730516435687120671028453350461782704813265
DLS 2: 012345678850462731148736520235680147386271054567104382704813265423057816671528403
DLS 3: 012345678123086547586274031867102354245730816438657120671528403350461782704813265
DLS 4: 012345678123056847586274031867102354248730516435687120671528403350461782704813265
DLS 5: 012345678850762431178436520235680147386271054567104382704813265423057816641528703
DLS 6: 012345678850462731148736520235680147306271854567104382784013265423857016671528403
DLS 7: 012345678850762431178436520235680147306271854567104382784013265423857016641528703
Adjacency matrix:
0100000
1011000
0100000
0100111
0001000
0001000
0001000
Different CFs set within combinatorial structure:
CF 1: 012345678123506847586274031867152304248730516435687120671028453350461782704813265
CF 2: 012345678123057864376520481658412730840731526765108342237684105401876253584263017
CF 3: 012345678123086547586274031867102354245730816438657120671528403350461782704813265
CF 4: 012345678123056847586274031867102354248730516435687120671528403350461782704813265
CF 5: 012345678120678345458267013807126534745032861386514207561483720673801452234750186
CF 6: 012345678123057864356720481678412530840531726765108342237684105401876253584263017
CF 7: 012345678120478365458267013807124536765032841384516207541683720673801452236750184
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 3, 4]
Multiset of vertices powers:
{1:5, 3:1, 4:1}
64. Structure 7N7M6C
DLSs within combinatorial structure:
DLS 1: 012345678123806754576138402650413827804572316748061235431287560365724081287650143
DLS 2: 012345678341287560408651327136570482657813204865732041284106753720468135573024816
DLS 3: 012345678231487560408651237186570342657218403365724081823106754740863125574032816
DLS 4: 012345678123806754567138402750413826804562317648071235431287560375624081286750143
DLS 5: 012345678123806754576138402657413820804572316748061235431280567365724081280657143
DLS 6: 012345678127806354536178402650417823804532716748061235471283560365724081283650147
DLS 7: 012345678127806354536178402653417820804532716748061235471280563365724081280653147
Adjacency matrix:
0110000
1001000
1001111
0110000
0010000
0010000
0010000
Different CFs set within combinatorial structure:
CF 1: 012345678123806754576138402650413827804572316748061235431287560365724081287650143
CF 2: 012345678123407865786014352865130427248751036634278510351826704570683241407562183
CF 3: 012345678120568743458736201583421067601872435746013582835607124267184350374250816
CF 4: 012345678123806754567138402750413826804562317648071235431287560375624081286750143
CF 5: 012345678123806754576138402657413820804572316748061235431280567365724081280657143
CF 6: 012345678127608534356871402748160253804253716635714820471082365563427081280536147
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 2, 2, 5]
Multiset of vertices powers:
{1:3, 2:3, 5:1}
65. Structure 7N7M7C
DLSs within combinatorial structure:
DLS 1: 012345678123458067381726504407561283865170432546083721654237810738602145270814356
DLS 2: 012345678586274301734801256865137420123068547678452013401583762250716834347620185
DLS 3: 012345678580624731264831057835172406123768540608457213471580362357016824746203185
DLS 4: 012345678845731206256104783674853120430526817108467532721680345367218054583072461
DLS 5: 012345678845271306736104285654837120423056817178462053501683742260718534387520461
DLS 6: 012345678840521736256134087634872105423756810108467253571680342367018524785203461
DLS 7: 012345678127053864741826530380561247865137402536784021654208713403672185278410356
Adjacency matrix:
0111110
1000000
1000000
1000001
1000000
1000001
0001010
Different CFs set within combinatorial structure:
CF 1: 012345678123458067381726504407561283865170432546083721654237810738602145270814356
CF 2: 012345678123586740674108235741820356537614802268753014486037521850271463305462187
CF 3: 012345678123587460785412306547860213401673825830156742364208157658724031276031584
CF 4: 012345678124083756643758102867520314485271063508416237376104825731862540250637481
CF 5: 012345678124678305846731250307816524268057413675403182451280736530162847783524061
CF 6: 012345678123850467764108325641527830836712054308476512580263741457031286275684103
CF 7: 012345678124658730543067281365870412670213845238704156786421503857132064401586327
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 2, 2, 5]
Multiset of vertices powers:
{1:3, 2:3, 5:1}
66. Structure 7N7M7C
DLSs within combinatorial structure:
DLS 1: 012345678123780546876051324380426751538214067641537280457602813705168432264873105
DLS 2: 012345678436518027345782106724160835650873241108426753873251460261037584587604312
DLS 3: 012345678783624501451038762568403127807261435320157846635780214146872350274516083
DLS 4: 012345678385276104506134287278403561134057826857612340461580732643728015720861453
DLS 5: 012345678531782046628507314805176432480623751276034185347861520754210863163458207
DLS 6: 012345678521780346684527013305176482840632751476208135237861504758413260163054827
DLS 7: 012345678867024315451276083683517240574132806720658431105483762346801527238760154
Adjacency matrix:
0100000
1011000
0100100
0100110
0011001
0001000
0000100
Different CFs set within combinatorial structure:
CF 1: 012345678123780546876051324380426751538214067641537280457602813705168432264873105
CF 2: 012345678123806745435672180804137526281760453567284301670523814756418032348051267
CF 3: 012345678128576340436087512867402153745213086350768421583120764201654837674831205
CF 4: 012345678120483756735862104568710432247631085806254317354176820471508263683027541
CF 5: 012345678123867045746138502287516430538071264860254713651480327405723186374602851
CF 6: 012345678120467835765182403581736024834610752378054261647528310456203187203871546
CF 7: 012345678124037856648270315370564281583416702865703124756821430407182563231658047
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 3, 3, 3]
Multiset of vertices powers:
{1:3, 2:1, 3:3}
67. Structure 7N7M7C
DLSs within combinatorial structure:
DLS 1: 012345678120476835564813027483627510738052461876201354301568742245730186657184203
DLS 2: 012345678381760542645128703836271054207534186453687210760812435124053867578406321
DLS 3: 012345678381720546245168703836271054607534182453687210760812435124053867578406321
DLS 4: 012345678720416835564873021483627510138052467876201354301568742245730186657184203
DLS 5: 012345678120476835564813027483627501738152460876201354301568742245730186657084213
DLS 6: 012345678381760542645128307876231054203574186457683210760812435124057863538406721
DLS 7: 012345678381720546245168307876231054603574182457683210760812435124057863538406721
Adjacency matrix:
0110000
1001000
1001100
0110011
0010000
0001000
0001000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835564813027483627510738052461876201354301568742245730186657184203
CF 2: 012345678120476853568204731734561280401738562683057124356182407847623015275810346
CF 3: 012345678120476853568204731734561280405738162683017524356182407847623015271850346
CF 4: 012345678120567843451783206345601782874230561736058124607812435268174350583426017
CF 5: 012345678120467853504781362758620134683572410875213046241836507367104285436058721
CF 6: 012345678123058746638174250840567132764230581375601824251786403407812365586423017
CF 7: 012345678123768504684173250530684127758216043801527436247850361465031782376402815
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 2, 3, 4]
Multiset of vertices powers:
{1:3, 2:2, 3:1, 4:1}
68. Structure 7N8M5C
DLSs within combinatorial structure:
DLS 1: 012345678123470856867054123451823067345162780670281345284637501508716432736508214
DLS 2: 012345678864537102678210345120786534786453021453102867537021486345678210201864753
DLS 3: 012345678120478356867054123453120867345862710678213045204687531531706482786531204
DLS 4: 012345678325470816867034521458123067541862730670258143284617305103786452736501284
DLS 5: 012345678123470856867054123458123067345862710670218345284637501501786432736501284
DLS 6: 012345678864537210678102345120786534786453102453021867537210486345678021201864753
DLS 7: 012345678867531402678210345720486531486153027153702864531024786345678210204867153
Adjacency matrix:
0100000
1011100
0100010
0100001
0100011
0010100
0001100
Different CFs set within combinatorial structure:
CF 1: 012345678123470856867054123451823067345162780670281345284637501508716432736508214
CF 2: 012345678230678145821506734687412053706853412354067281543721860465180327178234506
CF 3: 012345678120478356867054123453120867345862710678213045204687531531706482786531204
CF 4: 012345678123470856867054123458123067345862710670218345284637501501786432736501284
CF 5: 012345678120486537543678012864531720207864153351207486735120864678012345486753201
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 2, 3, 4]
Multiset of vertices powers:
{1:1, 2:4, 3:1, 4:1}
69. Structure 7N8M7C
DLSs within combinatorial structure:
DLS 1: 012345678120578346467051283783620154678413502835764021546237810251806437304182765
DLS 2: 012345678371482560254816037546237801867051324608173452783620145120564783435708216
DLS 3: 012345678120758346465071283783620154658413702837564021546237810271806435304182567
DLS 4: 012345678130758246465071382783620154658412703827564031546237810371806425204183567
DLS 5: 012345678130578246467051382783620154678412503825764031546237810351806427204183765
DLS 6: 012345678678432510254183067546217803187056324301678452763820145820564731435701286
DLS 7: 012345678678412530254183067546237801387056124103678452761820345820564713435701286
Adjacency matrix:
0100000
1011100
0100000
0100011
0100011
0001100
0001100
Different CFs set within combinatorial structure:
CF 1: 012345678120578346467051283783620154678413502835764021546237810251806437304182765
CF 2: 012345678126537804843712560570864132605478321387621045761250483438106257254083716
CF 3: 012345678120486735784152063635874210473618502356207184847560321268031457501723846
CF 4: 012345678123876405768504213504637182871452036247183560386210754635021847450768321
CF 5: 012345678123876405768504213504637182871452036240183567386210754635721840457068321
CF 6: 012345678123587460546078123781420356208654731674213085357106842830762514465831207
CF 7: 012345678123578046564821307387610254248056713436207185751432860870164532605783421
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 3, 3, 4]
Multiset of vertices powers:
{1:2, 2:2, 3:2, 4:1}
70. Structure 7N8M7C
DLSs within combinatorial structure:
DLS 1: 012345678123560847684071235471683520735214086256738401340856712867102354508427163
DLS 2: 012345678248016753356728041867502314104837562780461235531274806475683120623150487
DLS 3: 012345678123570846784061235471683520635214087256738401340856712867102354508427163
DLS 4: 012345678523170846784061235475683120631254087256738401340816752867502314108427563
DLS 5: 012345678523160847684071235475683120731254086256738401340816752867502314108427563
DLS 6: 012345678248016753356728041167502384804137562780461235531274806475683120623850417
DLS 7: 012345678148026753356718042867502314204837561780461235531274806475683120623150487
Adjacency matrix:
0100000
1011100
0100010
0100011
0100001
0011000
0001100
Different CFs set within combinatorial structure:
CF 1: 012345678123560847684071235471683520735214086256738401340856712867102354508427163
CF 2: 012345678120568743483106257564780312376452801847631520201873465635217084758024136
CF 3: 012345678123570846784061235471683520635214087256738401340856712867102354508427163
CF 4: 012345678120567834387601245438176502876254310654038721201783456543812067765420183
CF 5: 012345678120567834387601245478136502836254710654078321201783456543812067765420183
CF 6: 012345678120586743463108257584760312376452801847631520201873465635217084758024136
CF 7: 012345678120568743483106257564730812876452301347681520201873465635217084758024136
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 2, 3, 4]
Multiset of vertices powers:
{1:1, 2:4, 3:1, 4:1}
71. Structure 7N8M7C
DLSs within combinatorial structure:
DLS 1: 012345678123570846486752013541803762230617485875264301367081524758426130604138257
DLS 2: 012345678875263410538104726487650231621438057103572864754826103360781542246017385
DLS 3: 012345678875264310548103726487650231621438057103572864754826103360781542236017485
DLS 4: 012345678643572801481750362526804713304167285875213046267481530758036124130628457
DLS 5: 012345678143572806486750312521804763304617285875263041267481530758036124630128457
DLS 6: 012345678623570841481752063546803712230167485875214306367081524758426130104638257
DLS 7: 012345678874263510538104726487650231621538047103472865745826103360781452256017384
Adjacency matrix:
0110000
1001110
1000010
0100001
0100001
0110000
0001100
Different CFs set within combinatorial structure:
CF 1: 012345678123570846486752013541803762230617485875264301367081524758426130604138257
CF 2: 012345678120486735437568021801652347743210856658703412374821560265074183586137204
CF 3: 012345678123574860586702431431850726204617385675283014867431502758026143340168257
CF 4: 012345678123478065658713204435687120706852413867104352280531746541026837374260581
CF 5: 012345678123478065658713204435687120706852413567104382280531746841026537374260851
CF 6: 012345678124038765578613042650782134386457201437126580803261457245870316761504823
CF 7: 012345678120486753457863021638507412765012834801234567576128340243670185384751206
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4]
Multiset of vertices powers:
{2:6, 4:1}
72. Structure 7N9M7C
DLSs within combinatorial structure:
DLS 1: 012345678120467853583710426674581230835176042467238501746023185201854367358602714
DLS 2: 012345678581674302746823150853206417674032581230751864105468723328517046467180235
DLS 3: 012345678120467853853710426674581230238176045467238501746053182501824367385602714
DLS 4: 012345678120467853853710426674581230538176042467238501746023185201854367385602714
DLS 5: 012345678581674302746823150853206417174032586230751864605418723328567041467180235
DLS 6: 012345678541628307276483150753206814187034526830751462605812743324567081468170235
DLS 7: 012345678541628307276483150753206814687034521830751462105862743324517086468170235
Adjacency matrix:
0100000
1011000
0100111
0100111
0011000
0011000
0011000
Different CFs set within combinatorial structure:
CF 1: 012345678120467853583710426674581230835176042467238501746023185201854367358602714
CF 2: 012345678123458706846712350678501432580176243407683521734820165351264087265037814
CF 3: 012345678120467853853710426674581230238176045467238501746053182501824367385602714
CF 4: 012345678120467853853710426674581230538176042467238501746023185201854367385602714
CF 5: 012345678120567843385410726438751062674832501753286410846023157201674385567108234
CF 6: 012345678120478536704583261568137402286751043853016724471862350347620185635204817
CF 7: 012345678120478536704583261568127403386751042853016724471862350247630185635204817
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 3, 4, 4]
Multiset of vertices powers:
{1:1, 2:3, 3:1, 4:2}
73. Structure 7N10M7C
DLSs within combinatorial structure:
DLS 1: 012345678126087534457823061530612847843756102385401726671238450264170385708564213
DLS 2: 012345678740856321683017452265130784308274516421568037856701243537482160174623805
DLS 3: 012345678740826351683017425265130784308574216451268037826701543537482160174653802
DLS 4: 012345678740836251683017425365120784208574316451268037826701543537482160174653802
DLS 5: 012345678826017534457823061530682147143756802385401726671238450264170385708564213
DLS 6: 012345678823617540457826031536482107174053862685701423701268354260134785348570216
DLS 7: 012345678123687540457826031536412807874053162685701423701268354260134785348570216
Adjacency matrix:
0111000
1000100
1000111
1000111
0111000
0011000
0011000
Different CFs set within combinatorial structure:
CF 1: 012345678126087534457823061530612847843756102385401726671238450264170385708564213
CF 2: 012345678123687450458160327607534812274018536341276085530821764865703241786452103
CF 3: 012345678123758064358467120401683752284570316637214805760821543845106237576032481
CF 4: 012345678123584067248167530507621843654870321876253104380716452735408216461032785
CF 5: 012345678143857260758026143527604831680132457364781502835260714401578326276413085
CF 6: 012345678123706845857014263685470132761253480234168507406587321578632014340821756
CF 7: 012345678120486753635018247468750321873561402754123860287604135541237086306872514
Ascending sorted vector of vertices powers:
[2, 2, 2, 3, 3, 4, 4]
Multiset of vertices powers:
{2:3, 3:2, 4:2}
74. Structure 7N10M7C
DLSs within combinatorial structure:
DLS 1: 012345678123684750654731082560812437481076325708153264836207541247560813375428106
DLS 2: 012345678834207516708612435247560183375128064451736802623481750160853247586074321
DLS 3: 012345678834207516708613425247560183375128064451736802623481750160852347586074231
DLS 4: 012345678127684350634571082560812437481036725803157264376208541245760813758423106
DLS 5: 012345678123684750674531082560812437481076325807153264736208541245760813358427106
DLS 6: 012345678127684350634571082560812437481036725308157264876203541245760813753428106
DLS 7: 012345678123684750674531082560812437481076325708153264836207541245760813357428106
Adjacency matrix:
0110000
1001111
1001111
0110000
0110000
0110000
0110000
Different CFs set within combinatorial structure:
CF 1: 012345678123684750654731082560812437481076325708153264836207541247560813375428106
CF 2: 012345678120687435583476012854762301241053867367108254736524180678210543405831726
CF 3: 012345678120568743458736201583421067601872435746053812835607124267184350374210586
CF 4: 012345678124508736673482150785160243867253014401736825356871402540627381238014567
CF 5: 012345678123684750674531082560812437481076325807153264736208541245760813358427106
CF 6: 012345678123684750875163042504816237487532106360257814631720485248071563756408321
CF 7: 012345678123684750674531082560812437481076325708153264836207541245760813357428106
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 5, 5]
Multiset of vertices powers:
{2:5, 5:2}
75. Structure 8N7M4C
DLSs within combinatorial structure:
DLS 1: 012345678123756840548271306480132567857063214364587021271608453605814732736420185
DLS 2: 012345678435682017326107485654810732241576803807234156783421560160758324578063241
DLS 3: 012345678123756840548071326480132567857263014364587201271608453605814732736420185
DLS 4: 012345678823756140548071326480132567157263084364587201271608453605814732736420815
DLS 5: 012345678823756140548271306480132567157063284364587021271608453605814732736420815
DLS 6: 012345678823756140548271306480132567157063284364587012271608453605824731736410825
DLS 7: 012345678823756140548271306480132567157063284364507812271680453605824731736418025
DLS 8: 012345678823756140548271306480132567157063284364507821271680453605814732736428015
Adjacency matrix:
01000000
10111111
01000000
01000000
01000000
01000000
01000000
01000000
Different CFs set within combinatorial structure:
CF 1: 012345678123756840548271306480132567857063214364587021271608453605814732736420185
CF 2: 012345678123658407467021385650832741274510863831764052386107524745286130508473216
CF 3: 012345678123756840548071326480132567857263014364587201271608453605814732736420185
CF 4: 012345678127458306386107542750832461478610253835764120563021784241586037604273815
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 7]
Multiset of vertices powers:
{1:7, 7:1}
76. Structure 8N7M6C
DLSs within combinatorial structure:
DLS 1: 012345678230176854647580213768451302851267430485732061574803126103624587326018745
DLS 2: 012345678587264103103458762856713024374620815628571430241036587765802341430187256
DLS 3: 012345678485612307364708125257184036538076241846523710103267584721850463670431852
DLS 4: 012345678426013857261587043308452761850271436785136204574860312137624580643708125
DLS 5: 012345678253187046834076215345861702761238450470652381687503124108724563526410837
DLS 6: 012345678458716032671083245265437801837261450780152364324508716103624587546870123
DLS 7: 012345678258176034647083215765431802831267450480752361374508126103624587526810743
DLS 8: 012345678430716852671580243268457301857261430785132064524803716103624587346078125
Adjacency matrix:
01100000
10011111
10000000
01000000
01000000
01000000
01000000
01000000
Different CFs set within combinatorial structure:
CF 1: 012345678230176854647580213768451302851267430485732061574803126103624587326018745
CF 2: 012345678123086547645872103468753210750268431874531062587410326301624785236107854
CF 3: 012345678124038765567180423651407832340816257876523140783261504405672381238754016
CF 4: 012345678120453867284637105546820713308576421765201384673018542857164230431782056
CF 5: 012345678230176854647853210765481032581267403458702361874530126103624587326018745
CF 6: 012345678231678045604582317547820163853761420460157832175403286328016754786234501
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 6]
Multiset of vertices powers:
{1:6, 2:1, 6:1}
77. Structure 8N7M7C
DLSs within combinatorial structure:
DLS 1: 012345678123570846586013724704831265678154302435267180250786413861402537347628051
DLS 2: 012345678574168230743582061420657813837026145208471356361804527156730482685213704
DLS 3: 012345678127530846586713204304821765678154023435067182853276410261408537740682351
DLS 4: 012345678827530146586713204304821765678154023435067812153276480261408537740682351
DLS 5: 012345678321570846586031724704813265678154302435267180250786431863402517147628053
DLS 6: 012345678123570846586013724704831265678154302435267180850726413261408537347682051
DLS 7: 012345678823570146586013724704831265678154302435267810150726483261408537347682051
DLS 8: 012345678321570846586031724704813265678154302435267180850726431263408517147682053
Adjacency matrix:
01000000
10111111
01000000
01000000
01000000
01000000
01000000
01000000
Different CFs set within combinatorial structure:
CF 1: 012345678123570846586013724704831265678154302435267180250786413861402537347628051
CF 2: 012345678120567834753604182864170523648052317537418260486231705375826041201783456
CF 3: 012345678123756804487602351845137026738061542506483217371528460654270183260814735
CF 4: 012345678123856704506283417678421530761538042485607321847062153350174286234710865
CF 5: 012345678173564802384026517465273081548710263637408125256187340820631754701852436
CF 6: 012345678123570846586013724704831265678154302435267180850726413261408537347682051
CF 7: 012345678128473506605281743751834062346017825470526381583762410867150234234608157
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 7]
Multiset of vertices powers:
{1:7, 7:1}
78. Structure 8N8M1C
DLSs within combinatorial structure:
DLS 1: 012345678123768540735806124840623715608574231467081352586132407354217086271450863
DLS 2: 012345678430671852547260381371852406285413067853706124164587230706128543628034715
DLS 3: 012345678437851026546278301361780452280413567703562184154627830875106243628034715
DLS 4: 012345678653782140731408256840623715506871432287054361425136807368517024174260583
DLS 5: 012345678268710543785031264846123705301574826427608351530862417654287130173456082
DLS 6: 012345678527601834403762581351874026784510263845236107160483752276158340638027415
DLS 7: 012345678827451036563728401381670254740812563608534127156283740475106382234067815
DLS 8: 012345678358712460784601253846123705531076842267458031425860317603587124170234586
Adjacency matrix:
01100000
10010000
10001000
01000100
00100010
00010001
00001001
00000110
Different CFs set within combinatorial structure:
CF 1: 012345678123768540735806124840623715608574231467081352586132407354217086271450863
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2]
Multiset of vertices powers:
{2:8}
79. Structure 8N8M3C
DLSs within combinatorial structure:
DLS 1: 012345678124687350675124083253801764481760235560273841837512406748036512306458127
DLS 2: 012345678483056127137268405340127856265431780876504213721680534504872361658713042
DLS 3: 012345678481036527753268104570423816267154380846701235124680753305872461638517042
DLS 4: 012345678827631045653804217138450762780562134564127380405713826271086453346278501
DLS 5: 012345678860152743408517362325761480781623054157034826236408517674280135543876201
DLS 6: 012345678483250167167082435846107253625431780378564012731826504504678321250713846
DLS 7: 012345678481230567763082154876403215627154380548761032154826703305678421230517846
DLS 8: 012345678165782430854613702328576041486027153637108524270461385743250816501834267
Adjacency matrix:
01100000
10010000
10001000
01000100
00100010
00010001
00001001
00000110
Different CFs set within combinatorial structure:
CF 1: 012345678124687350675124083253801764481760235560273841837512406748036512306458127
CF 2: 012345678123856704437608521376584210805437162658721043581260437764012385240173856
CF 3: 012345678127658304534806127678524013801437562356781240485062731763210485240173856
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2]
Multiset of vertices powers:
{2:8}
80. Structure 8N8M4C
DLSs within combinatorial structure:
DLS 1: 012345678123574860586127403468751032807436125345208716270613584651082347734860251
DLS 2: 012345678250483716734860251105634827641578032478012365823756140367201584586127403
DLS 3: 012345678123574860586127403864751032407836125345208716270613584651082347738460251
DLS 4: 012345678631574820586127403428753016807412365245608731370261584153086247764830152
DLS 5: 012345678631574820586127403824753016407812365245608731370261584153086247768430152
DLS 6: 012345678850423716734860251105634827641578032478012365283756140367201584526187403
DLS 7: 012345678857423016134806257675134820740568132468712305283650741306271584521087463
DLS 8: 012345678257483016134806257675134820740568132468712305823650741306271584581027463
Adjacency matrix:
01000000
10111000
01000000
01000100
01000111
00011000
00001000
00001000
Different CFs set within combinatorial structure:
CF 1: 012345678123574860586127403468751032807436125345208716270613584651082347734860251
CF 2: 012345678124638750467150382536804217380761425675213804241087563803572146758426031
CF 3: 012345678123574860586127403864751032407836125345208716270613584651082347738460251
CF 4: 012345678124638750467150382536804127380762415675213804241087563803571246758426031
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 4, 4]
Multiset of vertices powers:
{1:4, 2:2, 4:2}
81. Structure 8N8M6C
DLSs within combinatorial structure:
DLS 1: 012345678120468357581704236307681542245176803768053124856237410634520781473812065
DLS 2: 012345678237184560728560413853407126580612347471236085645028731106873254364751802
DLS 3: 012345678720468351581704236307681542245176803168053724856237410634520187473812065
DLS 4: 012345678620478351581604237306781542245167803168053724857236410734520186473812065
DLS 5: 012345678720468351581704236307651842248176503165083724856237410634520187473812065
DLS 6: 012345678620478351581604237306751842248167503165083724857236410734520186473812065
DLS 7: 012345678120468357581704236307651842248176503765083124856237410634520781473812065
DLS 8: 012345678237184560728560413850437126583612047471206385645028731106873254364751802
Adjacency matrix:
01000000
10111110
01000001
01000000
01000001
01000000
01000000
00101000
Different CFs set within combinatorial structure:
CF 1: 012345678120468357581704236307681542245176803768053124856237410634520781473812065
CF 2: 012345678123057864765428013476802351381576402847163520254630187630281745508714236
CF 3: 012345678123567804465780231308421567740836152251678043634152780876204315587013426
CF 4: 012345678120483567863017452546870231678152043307264185451638720235706814784521306
CF 5: 012345678120468357581704236307651842248176503765083124856237410634520781473812065
CF 6: 012345678123057864765438012476802351281576403847163520354620187630281745508714236
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 6]
Multiset of vertices powers:
{1:4, 2:3, 6:1}
82. Structure 8N8M7C
DLSs within combinatorial structure:
DLS 1: 012345678123764850847051263478526031306817425651438702560172384235680147784203516
DLS 2: 012345678835271064356814720684703512768150243547082136201638457120467385473526801
DLS 3: 012345678735281064356814720684703512867150243548072136201638457120467385473526801
DLS 4: 012345678741680532278536041523167480304728156685403217836251704457012863160874325
DLS 5: 012345678126734850847051263478526031603817425351468702560172384235680147784203516
DLS 6: 012345678635208417358167024160473582781650243504782136246831750827014365473526801
DLS 7: 012345678835201467356817024680473512768150243504782136241638750127064385473526801
DLS 8: 012345678635278014358164720164703582781650243547082136206831457820417365473526801
Adjacency matrix:
01100000
10011000
10001000
01000000
01100111
00001000
00001000
00001000
Different CFs set within combinatorial structure:
CF 1: 012345678123764850847051263478526031306817425651438702560172384235680147784203516
CF 2: 012345678120478536573604281356180427485261703834517062201736845647823150768052314
CF 3: 012345678120478536573604281386150427458261703834517062201736845647823150765082314
CF 4: 012345678123780546348506217401657832765813420857024361286431705630278154574162083
CF 5: 012345678124758360357806412540682731265130847478561203831074526603427185786213054
CF 6: 012345678123467805256170384485731026741856230537208461364082157870613542608524713
CF 7: 012345678123470856835601742467812305256037481578164023780526134341758260604283517
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 3, 5]
Multiset of vertices powers:
{1:4, 2:2, 3:1, 5:1}
83. Structure 8N8M8C
DLSs within combinatorial structure:
DLS 1: 012345678123478056571682430457801362860134725385716204746023581608257143234560817
DLS 2: 012345678738256140824501367603782514245617803456038721187460235361874052570123486
DLS 3: 012345678735286140824501367603752814248617503456038721187460235361874052570123486
DLS 4: 012345678738256140824501367601782534245617803456038721387460215163874052570123486
DLS 5: 012345678735286140824501367601752834248617503456038721387460215163874052570123486
DLS 6: 012345678126478053571682430457801362830164725685713204743026581308257146264530817
DLS 7: 012345678123408756571682430450871362867134025385716204746023581608257143234560817
DLS 8: 012345678126408753571682430450871362837164025685713204743026581308257146264530817
Adjacency matrix:
01111000
10000000
10000000
10000111
10000010
00010000
00011000
00010000
Different CFs set within combinatorial structure:
CF 1: 012345678123478056571682430457801362860134725385716204746023581608257143234560817
CF 2: 012345678123678045687210534758402316501867423246153780430521867874036152365784201
CF 3: 012345678123687045684701253756820431278534160805176324437012586360458712541263807
CF 4: 012345678123678045687210534758402316501867423264153780430521867876034152345786201
CF 5: 012345678123687045684701253756820431278534160305176824437012586860453712541268307
CF 6: 012345678123786504768210453856402731501678342247153086375864120430521867684037215
CF 7: 012345678123408756571682430450871362867134025385716204746023581608257143234560817
CF 8: 012345678123768504768210453856402731501876342247153086375684120430521867684037215
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 4, 4]
Multiset of vertices powers:
{1:4, 2:2, 4:2}
84. Structure 8N8M8C
DLSs within combinatorial structure:
DLS 1: 012345678123076854267584310540132786784261035356728401831407562605813247478650123
DLS 2: 012345678278510463835207146401653827356428701784061235627184350140736582563872014
DLS 3: 012345678123074856247586310560132784784261035356728401831407562605813247478650123
DLS 4: 012345678723054816247186350160532784584261037356728401835407162601873245478610523
DLS 5: 012345678523074816247186350160532784784261035356728401835407162601853247478610523
DLS 6: 012345678723056814267184350140532786584261037356728401835407162601873245478610523
DLS 7: 012345678523076814267184350140532786784261035356728401835407162601853247478610523
DLS 8: 012345678278530461835207146401653827156428703784061235627184350340716582563872014
Adjacency matrix:
01000000
10111110
01000000
01000001
01000001
01000000
01000000
00011000
Different CFs set within combinatorial structure:
CF 1: 012345678123076854267584310540132786784261035356728401831407562605813247478650123
CF 2: 012345678120486537574163280836721405348657021251038764687510342765204813403872156
CF 3: 012345678123067854781234065608453721540672183356128407834706512467581230275810346
CF 4: 012345678120478536367251084603582147734860251258714360471603825845036712586127403
CF 5: 012345678123458067846073512284501736507632184631287405760124853375816240458760321
CF 6: 012345678123458067846073512304581726587632104631207485760124853275816340458760231
CF 7: 012345678123458067846073512384501726507632184631287405760124853275816340458760231
CF 8: 012345678120478536236817405653782140347651082578024361401536827865203714784160253
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 6]
Multiset of vertices powers:
{1:4, 2:3, 6:1}
85. Structure 8N9M4C
DLSs within combinatorial structure:
DLS 1: 012345678120478536784160253536827401367251084473016825851704362245683710608532147
DLS 2: 012345678253014867536827401784160253408736125360278514625481730871502346147653082
DLS 3: 012345678273014865536827401784160253408536127360258714627481530851702346145673082
DLS 4: 012345678253814067536027481784160253408736125360278514625481730871502346147653802
DLS 5: 012345678273814065536027481784160253408536127360258714627481530851702346145673802
DLS 6: 012345678328470516704168253536827401167253084471036825853704162245681730680512347
DLS 7: 012345678128470536704168253536827401367251084473016825851704362245683710680532147
DLS 8: 012345678320478516784160253536827401167253084471036825853704162245681730608512347
Adjacency matrix:
01111000
10000111
10000001
10000010
10000000
01000000
01010000
01100000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536784160253536827401367251084473016825851704362245683710608532147
CF 2: 012345678123574806706851432581423067670218543435687120867102354354760281248036715
CF 3: 012345678120487356874061235485610723567132084356728401231874560743506812608253147
CF 4: 012345678123486750504867231365710842276531084457628103831204567648072315780153426
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 4, 4]
Multiset of vertices powers:
{1:2, 2:4, 4:2}
86. Structure 8N9M4C
DLSs within combinatorial structure:
DLS 1: 012345678230187546726834105164702853843056712458671320587460231605213487371528064
DLS 2: 012345678321064857675481230746850321580273146237106584103728465864537012458612703
DLS 3: 012345678147508263268153047851624730376810425584237106625071384430762851703486512
DLS 4: 012345678647201853285613047521864730378520461864137502156078324430786215703452186
DLS 5: 012345678568270134107862543653401287834726015371658402480517326246183750725034861
DLS 6: 012345678287164503823406715106783452640857321754231860531670284365028147478512036
DLS 7: 012345678176583240465120387381256704703618452538074126627401835854732061240867513
DLS 8: 012345678573682140436120587385261704701538462168074235257406813824713056640857321
Adjacency matrix:
01110000
10101000
11000000
10000000
01000110
00001011
00001100
00000100
Different CFs set within combinatorial structure:
CF 1: 012345678230187546726834105164702853843056712458671320587460231605213487371528064
CF 2: 012345678124037856758164230861570324347612085230486517403258761576803142685721403
CF 3: 012345678120476835431058726374810562703564281568127304685203417847632150256781043
CF 4: 012345678123470865365287041708623514534718206876504132457861320640152783281036457
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 3, 3, 3, 3]
Multiset of vertices powers:
{1:2, 2:2, 3:4}
87. Structure 8N9M8C
DLSs within combinatorial structure:
DLS 1: 012345678120478536685107423734851062473560281846213750357682104201736845568024317
DLS 2: 012345678685732041374286510250613487106827354427051863831504726568470132743168205
DLS 3: 012345678685732041374286510258613407106827354427051863831504726560478132743160285
DLS 4: 012345678120478536265107483734851062473560821648213750357682104801736245586024317
DLS 5: 012345678120478536865107423734851062473560281648213750357682104201736845586024317
DLS 6: 012345678685702341374286510250613487136827054427051863801534726568470132743168205
DLS 7: 012345678685702341374286510258613407136827054427051863801534726560478132743160285
DLS 8: 012345678657832104308216745241673850586024317824157063135708426760481532473560281
Adjacency matrix:
01100000
10011000
10011000
01100110
01100001
00010000
00010000
00001000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536685107423734851062473560281846213750357682104201736845568024317
CF 2: 012345678123407865608512743537620184480731256765184302374068521856273410241856037
CF 3: 012345678123407865608512743537620184480731256765184320374268501856073412241856037
CF 4: 012345678120478536265107483734851062473560821648213750357682104801736245586024317
CF 5: 012345678120478536865107423734851062473560281648213750357682104201736845586024317
CF 6: 012345678123057846805163724486732051378416205764508312250681437537824160641270583
CF 7: 012345678123057846845163720486732051378416205764508312250681437537820164601274583
CF 8: 012345678123407865857064213284653107735210486601738542470586321346821750568172034
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 3, 3, 3, 4]
Multiset of vertices powers:
{1:3, 2:1, 3:3, 4:1}
88. Structure 8N9M8C
DLSs within combinatorial structure:
DLS 1: 012345678120476835534812067483627510768053421876201354301568742245730186657184203
DLS 2: 012345678381760542605124783836271054247538106453687210760812435124053867578406321
DLS 3: 012345678381720546205164783638271054847536102453687210760812435124053867576408321
DLS 4: 012345678381720546205164783836271054647538102453687210760812435124053867578406321
DLS 5: 012345678720416835534872061483627510168053427876201354301568742245730186657184203
DLS 6: 012345678120476835534812067483627501768153420876201354301568742245730186657084213
DLS 7: 012345678381760542605124387876231054243578106457683210760812435124057863538406721
DLS 8: 012345678381720546205164387876231054643578102457683210760812435124057863538406721
Adjacency matrix:
01110000
10001000
10000100
10001100
01010011
00110000
00001000
00001000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835534812067483627510768053421876201354301568742245730186657184203
CF 2: 012345678120476853568204731734561280471830562683057124356182407847623015205718346
CF 3: 012345678120476853568204731734561280457830162683017524376182405845623017201758346
CF 4: 012345678120476853568204731734561280475830162683017524356182407847623015201758346
CF 5: 012345678120487563864152307406831752538270416753016824375624180647508231281763045
CF 6: 012345678120476835534812067483627501768153420876201354301568742245730186657084213
CF 7: 012345678123058746638714250840567132764230581375601824251876403407182365586423017
CF 8: 012345678123768504684173250750684123538216047801527436247850361465031782376402815
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 3, 3, 4]
Multiset of vertices powers:
{1:2, 2:3, 3:2, 4:1}
89. Structure 8N10M2C
DLSs within combinatorial structure:
DLS 1: 012345678124067835351706482460831527845670213738524061576218340603182754287453106
DLS 2: 012345678356182704738064521207456183570218346681703452843670215124537860465821037
DLS 3: 012345678356182407438067521204756183570218346681403752843670215127534860765821034
DLS 4: 012345678421067835354706182160834527845670213738521064576218340603482751287153406
DLS 5: 012345678741026835356207184170832546865470213438561027524718360203684751687153402
DLS 6: 012345678386712504831064725205476813170258346657103482743680251524837160468521037
DLS 7: 012345678186732504831064725205476813370258146657103482743680251524817360468521037
DLS 8: 012345678741086235356207184170832546265470813438561027524718360803624751687153402
Adjacency matrix:
01100000
10011000
10010000
01100100
01000110
00011001
00001001
00000110
Different CFs set within combinatorial structure:
CF 1: 012345678124067835351706482460831527845670213738524061576218340603182754287453106
CF 2: 012345678123854760648270513760521834501436287456087321834762105375618042287103456
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 3, 3, 3]
Multiset of vertices powers:
{2:4, 3:4}
90. Structure 8N10M4C
DLSs within combinatorial structure:
DLS 1: 012345678230571846825706314471682530568217403387054261106438725654123087743860152
DLS 2: 012345678657482031541623780235710864703864512460538127384107256826071345178256403
DLS 3: 012345678174682530651423087230574816743860152406138725387051264825706341568217403
DLS 4: 012345678471682530654123087230571846743860152106438725387054261825706314568217403
DLS 5: 012345678235710846824071365457682031178256403386107254640538127561423780703864512
DLS 6: 012345678235710864826071345657482031178256403384107256460538127541623780703864512
DLS 7: 012345678230571864825704316671482530568217403387056241104638725456123087743860152
DLS 8: 012345678647582031451623780234710865703864512560438127385107246826071354178256403
Adjacency matrix:
01110000
10001100
10000010
10000110
01000001
01010001
00110000
00001100
Different CFs set within combinatorial structure:
CF 1: 012345678230571846825706314471682530568217403387054261106438725654123087743860152
CF 2: 012345678230678145867102354185467023506821437743056812471283560354710286628534701
CF 3: 012345678123587460578460132406132587247851306385076214864203751631728045750614823
CF 4: 012345678123786504486031725605173482874652130357408261741820356560217843238564017
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 3, 3, 3]
Multiset of vertices powers:
{2:4, 3:4}
91. Structure 8N10M5C
DLSs within combinatorial structure:
DLS 1: 012345678123678540865430127658712034704563281271084356347201865430856712586127403
DLS 2: 012345678257836104408152736760481523136728450823617045685074312541203867374560281
DLS 3: 012345678257834106608152734740681523136728450823417065485076312561203847374560281
DLS 4: 012345678123678540685430127856712034704563281271084356347201865430856712568127403
DLS 5: 012345678728651043861473520687532104374160285250784316543207861405816732136028457
DLS 6: 012345678143678520685230147856714032704563281471082356327401865230856714568127403
DLS 7: 012345678143678520865230147658714032704563281471082356327401865230856714586127403
DLS 8: 012345678748651023861273540687534102374160285450782316523407861205816734136028457
Adjacency matrix:
01100000
10011111
10001011
01000000
01100000
01000000
01100000
01100000
Different CFs set within combinatorial structure:
CF 1: 012345678123678540865430127658712034704563281271084356347201865430856712586127403
CF 2: 012345678120463857846751302587126043634870521375208164251637480708514236463082715
CF 3: 012345678124078536537601284286157340758463021870534162341726805603812457465280713
CF 4: 012345678123678540685430127856712034704563281271084356347201865430856712568127403
CF 5: 012345678123678540845230167458712036704863251671054382367401825230586714586127403
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 4, 6]
Multiset of vertices powers:
{1:2, 2:4, 4:1, 6:1}
92. Structure 8N10M7C
DLSs within combinatorial structure:
DLS 1: 012345678123508467786450231670824153245731806354167082837216540408672315561083724
DLS 2: 012345678346187520253761084164273805528410367730658241605824713871036452487502136
DLS 3: 012345678348167520253781064164273805526410387730658241605824713871036452487502136
DLS 4: 012345678346187520253761084164253807728410365530678241605824713871036452487502136
DLS 5: 012345678348167520253781064164253807726410385530678241605824713871036452487502136
DLS 6: 012345678123508467786450231270864153645731802354127086837216540408672315561083724
DLS 7: 012345678153208467786420531570864123645731802324157086837516240408672315261083754
DLS 8: 012345678123508467786450231270864153645731820354127086837016542408672315561283704
Adjacency matrix:
01111000
10000100
10000100
10000100
10000111
01111000
00001000
00001000
Different CFs set within combinatorial structure:
CF 1: 012345678123508467786450231670824153245731806354167082837216540408672315561083724
CF 2: 012345678120586347287614530368402715574863201435178026843750162601237854756021483
CF 3: 012345678120586347287614530368402715534867201475138026843750162601273854756021483
CF 4: 012345678123807465481732506358460127846573210507126384764051832630284751275618043
CF 5: 012345678123786504541067283850623741374851026285174360607432815768510432436208157
CF 6: 012345678120478536658713240573160482437856021304627815261084357845201763786532104
CF 7: 012345678120468537658713240563170482437856021304627815271084356845201763786532104
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 4, 4, 4]
Multiset of vertices powers:
{1:2, 2:3, 4:3}
93. Structure 8N10M8C
DLSs within combinatorial structure:
DLS 1: 012345678123608745385167204746820531467531082234716850571082463850274316608453127
DLS 2: 012345678648013527756820341483107265371452806520678413834261750205786134167534082
DLS 3: 012345678641083527756820341483107265378452106520678413834261750205716834167534082
DLS 4: 012345678648013527756820341483167205371452860520678413834201756205786134167534082
DLS 5: 012345678641083527756820341483167205378452160520678413834201756205716834167534082
DLS 6: 012345678123678045385167204746820531460531782234716850571082463857204316608453127
DLS 7: 012345678123678045385102764740826531406531287634017852561780423857264310278453106
DLS 8: 012345678173628045385107264240876531406531782634012857561780423857264310728453106
Adjacency matrix:
01111000
10000100
10000100
10000111
10000100
01111000
00010000
00010000
Different CFs set within combinatorial structure:
CF 1: 012345678123608745385167204746820531467531082234716850571082463850274316608453127
CF 2: 012345678120578346834762150365187204687234015578016423746820531453601782201453867
CF 3: 012345678123076854234160785875601243781534062357218406460827531546782310608453127
CF 4: 012345678120578346634782150385167204867234015578016423746820531453601782201453867
CF 5: 012345678123408756756820431384167205847536012675014823431782560560271384208653147
CF 6: 012345678123678045385167204746820531460531782234716850571082463857204316608453127
CF 7: 012345678123480756748652103837564210206831547561207834380176425475018362654723081
CF 8: 012345678123480756548672103237564810706831245861207534350126487475018362684753021
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 4, 4, 4]
Multiset of vertices powers:
{1:2, 2:3, 4:3}
94. Structure 8N10M8C
DLSs within combinatorial structure:
DLS 1: 012345678123468705706521384630857421578014236487603152364782510851276043245130867
DLS 2: 012345678786120543471806235348571062204638157623057814857263401165784320530412786
DLS 3: 012345678286170543471806235348521067704638152623057814857263401165784320530412786
DLS 4: 012345678863452701705261384530817426176024835487103562324786150251678043648530217
DLS 5: 012345678863412705705261384130857426576024831487103562324786150251678043648530217
DLS 6: 012345678123458706706521384530867421678014235487603152364782510851276043245130867
DLS 7: 012345678623458701705621384530817426178064235487103562364782150851276043246530817
DLS 8: 012345678623418705705621384130857426578064231487103562364782150851276043246530817
Adjacency matrix:
01100000
10011111
10000111
01000000
01000000
01100000
01100000
01100000
Different CFs set within combinatorial structure:
CF 1: 012345678123468705706521384630857421578014236487603152364782510851276043245130867
CF 2: 012345678123458760765230481481763025378012546840576312657124803504681237236807154
CF 3: 012345678123680754458273016387512460871064235640127583264851307536708142705436821
CF 4: 012345678123768054654130287740851326485273160238406715876012543501687432367524801
CF 5: 012345678123768054654130287745801326480273165238456710876012543501687432367524801
CF 6: 012345678123458706706521384530867421678014235487603152364782510851276043245130867
CF 7: 012345678123678045548210367736481250471056823604723581850162734365807412287534106
CF 8: 012345678123580746465107283274816035658271304846023517381762450730458162507634821
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 4, 6]
Multiset of vertices powers:
{1:2, 2:4, 4:1, 6:1}
95. Structure 8N10M8C
DLSs within combinatorial structure:
DLS 1: 012345678120478536658013427473581062734860251865207314347652180201736845586124703
DLS 2: 012345678285736041347258106821603754506124387473581260650817423168470532734062815
DLS 3: 012345678285736041437258106821603754506124387374581260650817423168470532743062815
DLS 4: 012345678140278536658013247273581460734862051865407312327650184401736825586124703
DLS 5: 012345678146278530658013247273581406734862051865407312327650184401736825580124763
DLS 6: 012345678120478536658013427473581260734862051865207314347650182201736845586124703
DLS 7: 012345678126478530658013427473581206734862051865207314347650182201736845580124763
DLS 8: 012345678285736041327458106841603752506124387473581260650817423168270534734062815
Adjacency matrix:
01100000
10011110
10010100
01100001
01000000
01100001
01000000
00010100
Different CFs set within combinatorial structure:
CF 1: 012345678120478536658013427473581062734860251865207314347652180201736845586124703
CF 2: 012345678123067854687523140561804237804732516745681023350176482478250361236418705
CF 3: 012345678123467850687523104561804237804732516745681023350176482478250361236018745
CF 4: 012345678123806754675218340438651027840573216756024831384762105567130482201487563
CF 5: 012345678128563704365704281470821356846037125781456032537218460254670813603182547
CF 6: 012345678120467835357206184735824061684152703468031527846570312573618240201783456
CF 7: 012345678120467835537206184753824061684152703468031527846570312375618240201783456
CF 8: 012345678123067854687520143561804237804732516745681320350176482478253061236418705
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 3, 3, 3, 5]
Multiset of vertices powers:
{1:2, 2:2, 3:3, 5:1}
96. Structure 8N10M8C
DLSs within combinatorial structure:
DLS 1: 012345678120487536583761024765124380648570213407638152831256407354802761276013845
DLS 2: 012345678781036254157280436834652107576813042325704861263471580408167325640528713
DLS 3: 012345678281036457154280736837652104576813042325407861463721580708164325640578213
DLS 4: 012345678281036754157280436834652107576813042325704861763421580408167325640578213
DLS 5: 012345678165427803823701564708164352340578216457682130581036427634250781276813045
DLS 6: 012345678465127803823704561708461352340578216157682430584036127631250784276813045
DLS 7: 012345678420187536583764021765421380648570213107638452834256107351802764276013845
DLS 8: 012345678463287501581724360725461083348570126107638452834056217650812734276103845
Adjacency matrix:
01110000
10000000
10001110
10001111
00110000
00110000
00110000
00010000
Different CFs set within combinatorial structure:
CF 1: 012345678120487536583761024765124380648570213407638152831256407354802761276013845
CF 2: 012345678123568704805621437761482350234076815487153062546807123650734281378210546
CF 3: 012345678120576834357461082506837421784150263835624107461782350648203715273018546
CF 4: 012345678120576834357481062506837421764150283835624107481762350648203715273018546
CF 5: 012345678123467805865701324708124536546873012437286150381052467254630781670518243
CF 6: 012345678120478536435286710603712845784160253258034167861507324347651082576823401
CF 7: 012345678123487560356120487467831205548072316701564832680753124834206751275618043
CF 8: 012345678120478536453786012678521340284160753701234865867053124345607281536812407
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 3, 4, 5]
Multiset of vertices powers:
{1:2, 2:3, 3:1, 4:1, 5:1}
97. Structure 8N12M4C
DLSs within combinatorial structure:
DLS 1: 012345678120487563786103245645831027364750812537024186803216754271568430458672301
DLS 2: 012345678248136750873562104451670382587421036360758421124087563736804215605213847
DLS 3: 012345678248136750863572104451760382586421037370658421124087563637804215705213846
DLS 4: 012345678284036751473562180851674302507128436368751024120487563736810245645203817
DLS 5: 012345678284036751463572180851764302506128437378651024120487563637810245745203816
DLS 6: 012345678380427561736801245605183427264750813527014386841236750178562034453678102
DLS 7: 012345678380427561736801245645183027264750813527014386801236754178562430453678102
DLS 8: 012345678120487563786103245605831427364750812537024186843216750271568034458672301
Adjacency matrix:
01111000
10000111
10000111
10000001
10000001
01100000
01100000
01111000
Different CFs set within combinatorial structure:
CF 1: 012345678120487563786103245645831027364750812537024186803216754271568430458672301
CF 2: 012345678120487563786103245605831427364750812537024186843216750271568034458672301
CF 3: 012345678123057846785613024534861207268174350407236185876520413651408732340782561
CF 4: 012345678143627805768031542627503481305418267854276130236850714570184326481762053
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4]
Multiset of vertices powers:
{2:4, 4:4}
98. Structure 8N12M7C
DLSs within combinatorial structure:
DLS 1: 012345678231687540754068231527836014678450123360721485843102756405213867186574302
DLS 2: 012345678143806752386721405408257163527134086735068241671483520860572314254610837
DLS 3: 012345678143876052386721405408257163520134786735068241671483520867502314254610837
DLS 4: 012345678761284503457068321543876012378652140206731485834107256625410837180523764
DLS 5: 012345678761284503457068231543876012278653140306721485824107356635410827180532764
DLS 6: 012345678768214503457068321543876012371652840206731485834107256625480137180523764
DLS 7: 012345678768214503457068231543876012271653840306721485824107356635480127180532764
DLS 8: 012345678238617540754068231527836014671450823360721485843102756405283167186574302
Adjacency matrix:
01100000
10011111
10011111
01100000
01100000
01100000
01100000
01100000
Different CFs set within combinatorial structure:
CF 1: 012345678231687540754068231527836014678450123360721485843102756405213867186574302
CF 2: 012345678120678543364510287643821705507463812281057436875106324436782150758234061
CF 3: 012345678230784561856132704683450127578013246461527380704261835127806453345678012
CF 4: 012345678231680745678452310405217863354768201763104582840573126127836054586021437
CF 5: 012345678230486751765132480583760124678013245851624307407251836124807563346578012
CF 6: 012345678234086751587261034861534207670812345403758126756123480128407563345670812
CF 7: 012345678234507861487261530561834207678012345803756124750123486126480753345678012
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 6, 6]
Multiset of vertices powers:
{2:6, 6:2}
99. Structure 8N12M7C
DLSs within combinatorial structure:
DLS 1: 012345678120486735643518027351702864407863152768154203834270516275631480586027341
DLS 2: 012345678857204316168073542625487130736520481584631027243816705301752864470168253
DLS 3: 012345678857204316168073542625437180786520431534681027243816705301752864470168253
DLS 4: 012345678857204316168073542620487135736520481584631027243816750301752864475168203
DLS 5: 012345678857204316168073542620437185786520431534681027243816750301752864475168203
DLS 6: 012345678120486735643518027301752864457863102768104253834270516275631480586027341
DLS 7: 012345678520486731643158027351702864407863512768514203834270156275631480186027345
DLS 8: 012345678120586734653418027341702865407863152768154203834270516275631480586027341
Adjacency matrix:
01111000
10000111
10000111
10000100
10000100
01111000
01100000
01100000
Different CFs set within combinatorial structure:
CF 1: 012345678120486735643518027351702864407863152768154203834270516275631480586027341
CF 2: 012345678123608745685274310468752031834160257257031864701583426370416582546827103
CF 3: 012345678123608745685274310468732051854160237237051864701583426370416582546827103
CF 4: 012345678123608745685274301468752130834160257257031864701583426370416582546827013
CF 5: 012345678120678543346782150574120386687453012831267405453016827265804731708531264
CF 6: 012345678120486735643518027301752864457863102768104253834270516275631480586027341
CF 7: 012345678120578346538417260364751082276834105781026453847260531453602817605183724
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4]
Multiset of vertices powers:
{2:4, 4:4}
100. Structure 8N12M8C
DLSs within combinatorial structure:
DLS 1: 012345678123486507846027153407153826635872410578604231784510362350261784261738045
DLS 2: 012345678760231854654870321371564280587023146435718062846102735203486517128657403
DLS 3: 012345678761230854654871320370564281587023146435718062846102735203486517128657403
DLS 4: 012345678123486507846027153487153026635872410578604231704518362350261784261730845
DLS 5: 012345678123486507846027153487153026365872410578604231704518362650231784231760845
DLS 6: 012345678123486507846027153407153826365872410578604231784510362650231784231768045
DLS 7: 012345678751260834384671520570834261637028145465713082846102753208456317123587406
DLS 8: 012345678750261834384670521571834260637028145465713082846102753208456317123587406
Adjacency matrix:
01100000
10011100
10011100
01100000
01100011
01100011
00001100
00001100
Different CFs set within combinatorial structure:
CF 1: 012345678123486507846027153407153826635872410578604231784510362350261784261738045
CF 2: 012345678120476835758023164486730251874561302365214087237108546643852710501687423
CF 3: 012345678120476835758023164286730451874561302365214087437108526643852710501687243
CF 4: 012345678123058764538620147785412036601873425874506213450761382246137850367284501
CF 5: 012345678123058746538420167785612034601873425876504213450761382264137850347286501
CF 6: 012345678123486507846027153407153826365872410578604231784510362650231784231768045
CF 7: 012345678173524806386702541548263017857016432430678125264157380621480753705831264
CF 8: 012345678173524806386702541548263710857016432430678125264150387621487053705831264
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4]
Multiset of vertices powers:
{2:4, 4:4}
101. Structure 8N12M8C
DLSs within combinatorial structure:
DLS 1: 012345678120678543753180264546817032367452801478036125281763450835204716604521387
DLS 2: 012345678253784160526807431784160523401536287347258016835621704678012345160473852
DLS 3: 012345678253784160526807431784160523401536287367258014835421706678012345140673852
DLS 4: 012345678320678514754180263536827041167453802478016325283764150845201736601532487
DLS 5: 012345678120678534754180263536817042367452801478036125281764350845203716603521487
DLS 6: 012345678120678534754180263536827041367451802478036125281764350845203716603512487
DLS 7: 012345678130678524754180362526837041267451803478026135381764250845203716603512487
DLS 8: 012345678120678543753180264546827031367451802478036125281763450835204716604512387
Adjacency matrix:
01100000
10011111
10011111
01100000
01100000
01100000
01100000
01100000
Different CFs set within combinatorial structure:
CF 1: 012345678120678543753180264546817032367452801478036125281763450835204716604521387
CF 2: 012345678123586047475618230604821753587234106348067512236170485851702364760453821
CF 3: 012345678123586740405618237674821053587234106348067512236170485851702364760453821
CF 4: 012345678123608745805164237274816503467531082346027851531782460658270314780453126
CF 5: 012345678120678534647231085473582160584067312865413207301754826258106743736820451
CF 6: 012345678120678534647231085473582160584167302865403217301754826258016743736820451
CF 7: 012345678120678435685731024873402561401567283264183750357214806748056312536820147
CF 8: 012345678120678543753180264546827031367451802478036125281763450835204716604512387
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 6, 6]
Multiset of vertices powers:
{2:6, 6:2}
102. Structure 8N13M8C
DLSs within combinatorial structure:
DLS 1: 012345678123087546245861037486752103657138420308624715731206854874510362560473281
DLS 2: 012345678534716820601278354365820417273064185840157263127483506758632041486501732
DLS 3: 012345678531706824604278153165824037270461385843057261427183506758632410386510742
DLS 4: 012345678541706823603278154165823047270461385834057261327184506758632410486510732
DLS 5: 012345678530716824604278153165824037271460385843057261427183506758632410386501742
DLS 6: 012345678540716823603278154165823047271460385834057261327184506758632410486501732
DLS 7: 012345678123087546245861037406752183657138420380624715731206854874510362568473201
DLS 8: 012345678123078546245861037406752183658137420380624715731206854874510362567483201
Adjacency matrix:
01111100
10000000
10000011
10000011
10000011
10000011
00111100
00111100
Different CFs set within combinatorial structure:
CF 1: 012345678123087546245861037486752103657138420308624715731206854874510362560473281
CF 2: 012345678123068547758234016536702481274651803480176325647823150865410732301587264
CF 3: 012345678127084536756238014530472861374856102863701425481623750245160387608517243
CF 4: 012345678127084536356278014570432861734856102863701425481623750245160387608517243
CF 5: 012345678120486735653718204764530821847061352208174563385207146571623480436852017
CF 6: 012345678120486735653718204764530821847261350208174563385027146571603482436852017
CF 7: 012345678123078546258610734507481263634752081471236805840167352765823410386504127
CF 8: 012345678123078546245861037406752183658137420380624715731206854874510362567483201
Ascending sorted vector of vertices powers:
[1, 3, 3, 3, 3, 4, 4, 5]
Multiset of vertices powers:
{1:1, 3:4, 4:2, 5:1}
103. Structure 8N14M4C
DLSs within combinatorial structure:
DLS 1: 012345678123684750375168042504816237487532106836207514651720483248071365760453821
DLS 2: 012345678736208514148572360651720483360457821423681705504816237875163042287034156
DLS 3: 012345678736508214148072365621750483360427851453681720204816537875163042587234106
DLS 4: 012345678736208415158072364641720583360457821423681750504816237875163042287534106
DLS 5: 012345678736208514148072365651720483360457821423681750504816237875163042287534106
DLS 6: 012345678120684753375168042504816237487532106836207514651723480248071365763450821
DLS 7: 012345678127684350735168042504816237483572106876203514651720483248031765360457821
DLS 8: 012345678123684750375168042504816237487532106856207314631720485248071563760453821
Adjacency matrix:
01111000
10000111
10000110
10000011
10000111
01101000
01111000
01011000
Different CFs set within combinatorial structure:
CF 1: 012345678123684750375168042504816237487532106836207514651720483248071365760453821
CF 2: 012345678123786450754631082570812346481067235608153724837204561246570813365428107
CF 3: 012345678120486735573861042856702314487253106304618257631527480248170563765034821
CF 4: 012345678123684750375168042504816237487532106856207314631720485248071563760453821
Ascending sorted vector of vertices powers:
[3, 3, 3, 3, 4, 4, 4, 4]
Multiset of vertices powers:
{3:4, 4:4}
104. Structure 8N14M8C
DLSs within combinatorial structure:
DLS 1: 012345678123458067458701326807634152284516730631287405760123584375860241546072813
DLS 2: 012345678637281405104637582753106824568423017420758361281564730846072153375810246
DLS 3: 012345678637281405104673582753106824568427013420758361281564730846032157375810246
DLS 4: 012345678637281450504637182753160824168423507425708316286054731841572063370816245
DLS 5: 012345678637281450504673182753160824168427503425708316286054731841532067370816245
DLS 6: 012345678123458067458761320807634152284510736361287405730126584675803241546072813
DLS 7: 012345678123458067458761320807634152284510736631287405760123584375806241546072813
DLS 8: 012345678163458027458721360807234156684510732231687405720163584375806241546072813
Adjacency matrix:
01111000
10000110
10000110
10000111
10000111
01111000
01111000
00011000
Different CFs set within combinatorial structure:
CF 1: 012345678123458067458701326807634152284516730631287405760123584375860241546072813
CF 2: 012345678231684705657812430780451362548263017163708524405137286824076153376520841
CF 3: 012345678231684705657812430780451362548267013163708524405173286824036157376520841
CF 4: 012345678124738560857064321563187402680451237348206715731620854205873146476512083
CF 5: 012345678124738560657084321583167402860451237348206715731620854205873146476512083
CF 6: 012345678123458067458761320807634152284510736361287405730126584675803241546072813
CF 7: 012345678123458067458761320807634152284510736631287405760123584375806241546072813
CF 8: 012345678120456837874601253685730142307214586231568704456187320543872061768023415
Ascending sorted vector of vertices powers:
[2, 3, 3, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{2:1, 3:2, 4:5}
105. Structure 8N16M1C
DLSs within combinatorial structure:
DLS 1: 012345678124038765587162403671583042348610257856724130765801324403276581230457816
DLS 2: 012345678485612307864537120203154786620873541137206854546780213758461032371028465
DLS 3: 012345678485612307846537210103256784260873541637401852521780463758124036374068125
DLS 4: 012345678485612307364087125258104736623578041107236584846753210730461852571820463
DLS 5: 012345678485612307346087215158206734263578041607431582821753460730124856574860123
DLS 6: 012345678127058463785162304631487052548610237876523140364801725403276581250734816
DLS 7: 012345678167850423725108364831467250546012837270583146384621705403276581658734012
DLS 8: 012345678164830725527108463871563240346012857250784136785621304403276581638457012
Adjacency matrix:
01111000
10000111
10000111
10000111
10000111
01111000
01111000
01111000
Different CFs set within combinatorial structure:
CF 1: 012345678124038765587162403671583042348610257856724130765801324403276581230457816
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{4:8}
106. Structure 8N16M2C
DLSs within combinatorial structure:
DLS 1: 012345678123584067536107284340761852608432715467058123274810536851276340785623401
DLS 2: 012345678376028514204781356421830765760154283583276401857463120145602837638517042
DLS 3: 012345678736028541207483156421830765160754283584216307853167420375602814648571032
DLS 4: 012345678378206514864721350421830765786154023503672481657483102145068237230517846
DLS 5: 012345678738206541867423150421830765186754023504612387653187402375068214240571836
DLS 6: 012345678823514760536870214348167052671432805467058123284701536750286341105623487
DLS 7: 012345678843612750635870412358127046271436805467058123586701234720584361104263587
DLS 8: 012345678143682057635107482350721846208436715467058123576810234821574360784263501
Adjacency matrix:
01111000
10000111
10000111
10000111
10000111
01111000
01111000
01111000
Different CFs set within combinatorial structure:
CF 1: 012345678123584067536107284340761852608432715467058123274810536851276340785623401
CF 2: 012345678123608547547830126468573012275061483301284765630127854854716230786452301
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{4:8}
107. Structure 8N16M3C
DLSs within combinatorial structure:
DLS 1: 012345678230678541681457023875203164304761285768514302547032816423186750156820437
DLS 2: 012345678347052816768514302423186750156820437681437025230678541875203164504761283
DLS 3: 012345678367052814748516302623184750156820437481637025230478561875203146504761283
DLS 4: 012345678347052816168574302423186750756820431681437025230618547875203164504761283
DLS 5: 012345678367052814148576302623184750756820431481637025230418567875203146504761283
DLS 6: 012345678230678541681437025875203164504761283768514302347052816423186750156820437
DLS 7: 012345678430678521681257043875403162304761285768512304527034816243186750156820437
DLS 8: 012345678430678521681237045875403162504761283768512304327054816243186750156820437
Adjacency matrix:
01111000
10000111
10000111
10000111
10000111
01111000
01111000
01111000
Different CFs set within combinatorial structure:
CF 1: 012345678230678541681457023875203164304761285768514302547032816423186750156820437
CF 2: 012345678230678541681437025875203164504761283768514302347052816423186750156820437
CF 3: 012345678230867514351782460524610837768453021146278305483021756875106243607534182
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{4:8}
108. Structure 8N16M4C
DLSs within combinatorial structure:
DLS 1: 012345678123568047834701265367850124506437812750126483285014736471682350648273501
DLS 2: 012345678467823510103286457648712305370654281521038764856470123235107846784561032
DLS 3: 012345678647821530406283157138762405370154286521038764854670321265407813783516042
DLS 4: 012345678468703512173826450640217385387654021521038764756482103835170246204561837
DLS 5: 012345678648701532476823150130267485387154026521038764754682301865470213203516847
DLS 6: 012345678173268045834501762367850124506432817240176583485017236721684350658723401
DLS 7: 012345678823516047634708215367850124501437862758621403285164730476082351140273586
DLS 8: 012345678873216045634508712367850124501432867248671503485167230726084351150723486
Adjacency matrix:
01111000
10000111
10000111
10000111
10000111
01111000
01111000
01111000
Different CFs set within combinatorial structure:
CF 1: 012345678123568047834701265367850124506437812750126483285014736471682350648273501
CF 2: 012345678120438756567180423871653204345812067658704132786521340403276581234067815
CF 3: 012345678120768453384152760751683042648510237835427106576801324403276581267034815
CF 4: 012345678124687350583210746461572083275863401837104265650721834748036512306458127
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{4:8}
109. Structure 8N16M6C
DLSs within combinatorial structure:
DLS 1: 012345678128537406503286714481703562375862041860154327734628150657410283246071835
DLS 2: 012345678763854012458710263120586734236071485687432150845107326501623847374268501
DLS 3: 012345678763824015458710263120586734536071482687432150845107326201653847374268501
DLS 4: 012345678763854012458701263120586734236170485687432150845017326501623847374268501
DLS 5: 012345678763824015458701263120586734536170482687432150845017326201653847374268501
DLS 6: 012345678128537406503826714481703562375268041860154327734682150657410283246071835
DLS 7: 012345678328517406503826714481703562175268043860154327734682150657430281246071835
DLS 8: 012345678328517406503286714481703562175862043860154327734628150657430281246071835
Adjacency matrix:
01111000
10000111
10000111
10000111
10000111
01111000
01111000
01111000
Different CFs set within combinatorial structure:
CF 1: 012345678128537406503286714481703562375862041860154327734628150657410283246071835
CF 2: 012345678234576801387162450840657123765413082471208536503781264156820347628034715
CF 3: 012345678231687540658403127475230861104768253367514082843152706520876314786021435
CF 4: 012345678235678140807164352578436021164857203346012785451203867623780514780521436
CF 5: 012345678231678540658403127475230861104867253367514082843152706520786314786021435
CF 6: 012345678128537406503826714481703562375268041860154327734682150657410283246071835
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{4:8}
110. Structure 8N16M8C
DLSs within combinatorial structure:
DLS 1: 012345678123680754647152083870514362384761205468273510501437826235806147756028431
DLS 2: 012345678475802163708613542621437850156028437837156024260574381543280716384761205
DLS 3: 012345678675802143708413562421637850156028437837154026240576381563280714384761205
DLS 4: 012345678475802163108673542621437850756028431837156024260514387543280716384761205
DLS 5: 012345678675802143108473562421637850756028431837154026240516387563280714384761205
DLS 6: 012345678123680754647132085870514362584761203468273510301457826235806147756028431
DLS 7: 012345678143680752627154083870512364384761205268473510501237846435806127756028431
DLS 8: 012345678143680752627134085870512364584761203268473510301257846435806127756028431
Adjacency matrix:
01111000
10000111
10000111
10000111
10000111
01111000
01111000
01111000
Different CFs set within combinatorial structure:
CF 1: 012345678123680754647152083870514362384761205468273510501437826235806147756028431
CF 2: 012345678230786514457861320543670281128453067706218435864027153375102846681534702
CF 3: 012345678230876514456021387548710236687453021173268405324687150865102743701534862
CF 4: 012345678230786514457861320543610287728453061106278435864027153375102846681534702
CF 5: 012345678230876514647512083468203157354768201803451762175034826521687340786120435
CF 6: 012345678123680754647132085870514362584761203468273510301457826235806147756028431
CF 7: 012345678127486530354867201586730124408153762273618045861204357645072813730521486
CF 8: 012345678128476530354867201586730124407153862273618045861204357645082713730521486
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{4:8}
111. Structure 9N8M5C
DLSs within combinatorial structure:
DLS 1: 012345678123487506875604132587162043601238457348576210234850761460721385756013824
DLS 2: 012345678675218043423760581234856710180427365756104832567083124801632457348571206
DLS 3: 012345678675218043423780561234856710160427385756104832587063124801632457348571206
DLS 4: 012345678675218043423761580234856701180427365756104832567083124801632457348570216
DLS 5: 012345678675218043423781560234856701160427385756104832587063124801632457348570216
DLS 6: 012345678675218034324760581243856710180427365756103842567084123801632457438571206
DLS 7: 012345678675218034324780561243856710160427385756103842587064123801632457438571206
DLS 8: 012345678675218034324761580243856701180427365756103842567084123801632457438570216
DLS 9: 012345678675218034324781560243856701160427385756103842587064123801632457438570216
Adjacency matrix:
011111111
100000000
100000000
100000000
100000000
100000000
100000000
100000000
100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123487506875604132587162043601238457348576210234850761460721385756013824
CF 2: 012345678230458716386712504861503427678124035423687150154270863507861342745036281
CF 3: 012345678230468715386712504861503427578124036423687150154270863607851342745036281
CF 4: 012345678230458716386712504861503427673124085428637150154270863507861342745086231
CF 5: 012345678230468715386712504861503427573124086428637150154270863607851342745086231
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 8]
Multiset of vertices powers:
{1:8, 8:1}
112. Structure 9N8M7C
DLSs within combinatorial structure:
DLS 1: 012345678123754860268417053406581237750132486381276504634820715875603142547068321
DLS 2: 012345678537682014684071325375164802461820753820537461246718530103456287758203146
DLS 3: 012345678637582014854071326378164502461820753520637481245716830103458267786203145
DLS 4: 012345678547682013683071425375160842461823750824507361206718534130456287758234106
DLS 5: 012345678647582013853071426378160542461823750524607381205716834130458267786234105
DLS 6: 012345678476582013853061427368170542641823750527604381205417836130758264784236105
DLS 7: 012345678647580213853671402378102546421863750564027381205716834136458027780234165
DLS 8: 012345678647082153803571426378160542465823701124657380251706834530418267786234015
DLS 9: 012345678476082153803561427368170542645823701127654380251407836530718264784236015
Adjacency matrix:
011111111
100000000
100000000
100000000
100000000
100000000
100000000
100000000
100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123754860268417053406581237750132486381276504634820715875603142547068321
CF 2: 012345678123568047486137520570483162604872315845021736731256804368704251257610483
CF 3: 012345678120468537485723061831604752758016243304257816647180325263571480576832104
CF 4: 012345678120678435356807214278560341683412057531724806845231760764053182407186523
CF 5: 012345678120678543536807214278460351684512037451723806845231760763054182307186425
CF 6: 012345678123876054765102483874630512580714236458263701347021865236587140601458327
CF 7: 012345678123607845467528013601852734378014562845763201256130487734286150580471326
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 8]
Multiset of vertices powers:
{1:8, 8:1}
113. Structure 9N8M9C
DLSs within combinatorial structure:
DLS 1: 012345678123087546257438160578613204601752483836204715340176852465821037784560321
DLS 2: 012345678734560812876204351340186725465821037158437206287613540601752483523078164
DLS 3: 012345678734560812876204351340186725465821037158437260287013546601752483523678104
DLS 4: 012345678374560812836204751740186325465821037158473206283617540601752483527038164
DLS 5: 012345678374560812836204751740186325465821037158473260283017546601752483527638104
DLS 6: 012345678734260815876504321340186752465821037158437206287613540601752483523078164
DLS 7: 012345678734260815876504321340186752465821037158437260287013546601752483523678104
DLS 8: 012345678374260815836504721740186352465821037158473206283617540601752483527038164
DLS 9: 012345678374260815836504721740186352465821037158473260283017546601752483527638104
Adjacency matrix:
011111111
100000000
100000000
100000000
100000000
100000000
100000000
100000000
100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123087546257438160578613204601752483836204715340176852465821037784560321
CF 2: 012345678120576834784152063235864701473618520346207185657480312861023457508731246
CF 3: 012345678120476835784152063235864701473618520356207184647580312861023457508731246
CF 4: 012345678120467835784153026635824701408712563357206184846570312271638450563081247
CF 5: 012345678120476835784152063235864701403618527356207184647580312861723450578031246
CF 6: 012345678123068547508624731451780362364857120640173285876512403735206814287431056
CF 7: 012345678123508467586427103470182536861730254658074321235816740347651082704263815
CF 8: 012345678123068547508624731451780362364257180640173825876512403735806214287431056
CF 9: 012345678123508467586427103470182536261730854658074321835216740347651082704863215
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 8]
Multiset of vertices powers:
{1:8, 8:1}
114. Structure 9N8M9C
DLSs within combinatorial structure:
DLS 1: 012345678120687345548731026867503214473168502385274160601452783254016837736820451
DLS 2: 012345678854723061703162584625874103568410237146087352387206415431658720270531846
DLS 3: 012345678120687534468721053837406215376158402685273140201534786543012867754860321
DLS 4: 012345678853720416736412580325874061568031247140687352487263105604158723271506834
DLS 5: 012345678148537062865174203201763845673418520486052731524680317357206184730821456
DLS 6: 012345678281056734403627581634580217548273106357461820876102453720814365165738042
DLS 7: 012345678526438107861074253375861420704156832243617085187520364638702541450283716
DLS 8: 012345678481756023734602581620587314578230146357461802846173250203814765165028437
DLS 9: 012345678876532104261058743347861520405126837723614085154780362638207451580473216
Adjacency matrix:
010000000
101000000
010100000
001010000
000101000
000010100
000001010
000000101
000000010
Different CFs set within combinatorial structure:
CF 1: 012345678120687345548731026867503214473168502385274160601452783254016837736820451
CF 2: 012345678230176854684027315563710482128564730705238146341802567876451023457683201
CF 3: 012345678120483567578261034457612803634078215786534120201857346843106752365720481
CF 4: 012345678123487506587230461734562810265813047408756132846071325650124783371608254
CF 5: 012345678123486057586230741634572180275813406408657312750124863847061235361708524
CF 6: 012345678123874065854706213276580431507613842368427150485261307631052784740138526
CF 7: 012345678120468537756283410475810326834051762643107285387526104568732041201674853
CF 8: 012345678231768504384150762867513240543027816705486321476802135650271483128634057
CF 9: 012345678123068745836524017380716452458137260645271803701482536274650381567803124
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2]
Multiset of vertices powers:
{1:2, 2:7}
115. Structure 9N9M9C
DLSs within combinatorial structure:
DLS 1: 012345678120473865354867210783650142201734586536108427845216703678021354467582031
DLS 2: 012345678245768103678021354461502837530876421827413560706134285354687012183250746
DLS 3: 012345678130476825354687012726853140281764503563102487845210736678021354407538261
DLS 4: 012345678160473825354687012723856140281734506536102487845210763678021354407568231
DLS 5: 012345678120473865354867210783650142201734586536128407845016723678201354467582031
DLS 6: 012345678160473825354687012723856140281734506546102387835210764678021453407568231
DLS 7: 012345678120473865354867210783650142201734586546128307835016724678201453467582031
DLS 8: 012345678120473865354867210783650142201734586546108327835216704678021453467582031
DLS 9: 012345678425768103678021354261504837530876241847213560706132485354687012183450726
Adjacency matrix:
010000000
101111110
010000001
010000001
010000000
010000000
010000000
010000000
001100000
Different CFs set within combinatorial structure:
CF 1: 012345678120473865354867210783650142201734586536108427845216703678021354467582031
CF 2: 012345678126087435385476210763854102801762354254103867430521786678210543547638021
CF 3: 012345678120476835634582107758120364587263410403718526865031742346807251271654083
CF 4: 012345678120476835534682107768120354687253410403718526856031742345807261271564083
CF 5: 012345678120473865354867210783650142201734586536128407845016723678201354467582031
CF 6: 012345678120476835534682107768120354687253410453718026806531742345807261271064583
CF 7: 012345678120473865354867210783650142201734586546128307835016724678201453467582031
CF 8: 012345678120473865354867210783650142201734586546108327835216704678021453467582031
CF 9: 012345678123786504768054312835417026304561287480273165251608743647132850576820431
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 2, 2, 2, 7]
Multiset of vertices powers:
{1:5, 2:3, 7:1}
116. Structure 9N10M6C
DLSs within combinatorial structure:
DLS 1: 012345678123458706438016527360781452546237081785604213654872130871520364207163845
DLS 2: 012345678276081543823157064745863210658410327304276185137528406460732851581604732
DLS 3: 012345678360412857685704231834276105527831460176028543401653782243587016758160324
DLS 4: 012345678865432017631784205104276583327851460576028341483610752248507136750163824
DLS 5: 012345678863412057635784201304276185527831460176028543481650732248507316750163824
DLS 6: 012345678276081543821537064745863210638450127504276381357128406460712835183604752
DLS 7: 012345678270186543823057164745813206158460327364271085637528410406732851581604732
DLS 8: 012345678276081543183257064745863210651420387304176825837512406460738152528604731
DLS 9: 012345678246087513823451067175863240658170324307216485734528106460732851581604732
Adjacency matrix:
010000000
101110000
010001000
010000100
010001111
001010000
000110000
000010000
000010000
Different CFs set within combinatorial structure:
CF 1: 012345678123458706438016527360781452546237081785604213654872130871520364207163845
CF 2: 012345678120478563576183420681530742834716205765204831407852316253067184348621057
CF 3: 012345678123758460346087152258403716834672501560231847675810324701564283487126035
CF 4: 012345678120476835257834016743581260831062547568213704685107423374650182406728351
CF 5: 012345678124086753358621407873560241607413825481257036546708312235874160760132584
CF 6: 012345678120478563536781420687510342874136205365204817401852736253067184748623051
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 2, 2, 2, 4, 5]
Multiset of vertices powers:
{1:3, 2:4, 4:1, 5:1}
117. Structure 9N11M9C
DLSs within combinatorial structure:
DLS 1: 012345678120483567874652103768124350341570286485036712503761824657208431236817045
DLS 2: 012345678281036754765124380830652147574813062326487501157208436403761825648570213
DLS 3: 012345678281036754765124380830652147574813062356487201127508436403761825648270513
DLS 4: 012345678120487536834652107768124350641570283485063712506731824357208461273816045
DLS 5: 012345678120487563834652107768124350341570286485036712503761824657208431276813045
DLS 6: 012345678120487563834652107678124350341570286485036712503761824756208431267813045
DLS 7: 012345678170482536834657102268174350641520783485063217506731824357208461723816045
DLS 8: 012345678170482563834657102268174350341520786485036217503761824657208431726813045
DLS 9: 012345678170483562824657103268174350341520786485036217503761824657208431736812045
Adjacency matrix:
011000000
100111111
100111000
011000000
011000000
011000000
010000000
010000000
010000000
Different CFs set within combinatorial structure:
CF 1: 012345678120483567874652103768124350341570286485036712503761824657208431236817045
CF 2: 012345678123486750658723104275610843467531082834207561306158427540872316781064235
CF 3: 012345678123786450548627103407512386786231045831064527364850712275103864650478231
CF 4: 012345678120487536834650127765124380648571203481063752506732814357208461273816045
CF 5: 012345678120487563834650127765124380348571206481036752503762814657208431276813045
CF 6: 012345678120483567874650123765124380348571206481036752503762814657208431236817045
CF 7: 012345678120487536834670125567124380648751203481063752706532814375208461253816047
CF 8: 012345678120487563834670125567124380348751206481036752703562814675208431256813047
CF 9: 012345678120487563834670125657124380348751206481036752703562814576208431265813047
Ascending sorted vector of vertices powers:
[1, 1, 1, 2, 2, 2, 2, 4, 7]
Multiset of vertices powers:
{1:3, 2:4, 4:1, 7:1}
118. Structure 9N12M2C
DLSs within combinatorial structure:
DLS 1: 012345678124758036473682510368507142580463721835071264751826403647210385206134857
DLS 2: 012345678856123704108257436431786250673012845260534187587460321724801563345678012
DLS 3: 012345678856423107708251436134786250673012845260534781587160324421807563345678012
DLS 4: 012345678348072516425601387267814035534768201103257864870536142651483720786120453
DLS 5: 012345678348076512265401387627814035534768201103257846870532164451683720786120453
DLS 6: 012345678624718035473682150368107542180453726835076214756821403547260381201534867
DLS 7: 012345678865123704508267431436781250173052846250634187687410325724806513341578062
DLS 8: 012345678625718034573682140468107352180453726854076213736821405347260581201534867
DLS 9: 012345678348076152256401387127854036634718205503267841870132564461583720785620413
Adjacency matrix:
011000000
100111000
100001000
010000100
010001110
011010001
000110000
000010001
000001010
Different CFs set within combinatorial structure:
CF 1: 012345678124758036473682510368507142580463721835071264751826403647210385206134857
CF 2: 012345678123708465365024187687453021248670513436281750754136802801567234570812346
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4]
Multiset of vertices powers:
{2:6, 4:3}
119. Structure 9N12M5C
DLSs within combinatorial structure:
DLS 1: 012345678123806754567138402708453126840562317684071235431287560375624081256710843
DLS 2: 012345678231487560408651237167530842675218403356724081823106754740863125584072316
DLS 3: 012345678231487560408653217167530842675218403356724081823106754740861325584072136
DLS 4: 012345678127806354536178402608457123840532716784061235471283560365724081253610847
DLS 5: 012345678123806754576138402608453127840572316784061235431287560365724081257610843
DLS 6: 012345678271480563784651230163504782605213847356728401820176354438067125547832016
DLS 7: 012345678271480563784651230863504712605213847356728401120876354438067125547132086
DLS 8: 012345678127806354356178402608457123840532716784061235471283560563724081235610847
DLS 9: 012345678127806354356178402638457120840532716784061235471280563563724081205613847
Adjacency matrix:
011000000
100110000
100110000
011001100
011000000
000100011
000100011
000001100
000001100
Different CFs set within combinatorial structure:
CF 1: 012345678123806754567138402708453126840562317684071235431287560375624081256710843
CF 2: 012345678120568743458736201586421037603872415741053862835607124267184350374210586
CF 3: 012345678120687435583476012851762304247053861364108257736524180678210543405831726
CF 4: 012345678127608534356871402784160253840253716608734125471582360563427081235016847
CF 5: 012345678123806754576138402608453127840572316784061235431287560365724081257610843
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 3, 3, 3, 4]
Multiset of vertices powers:
{2:4, 3:4, 4:1}
120. Structure 9N12M9C
DLSs within combinatorial structure:
DLS 1: 012345678123786450357618042460527831805231764538164207786450123641072385274803516
DLS 2: 012345678867432105628074351254106783183750246746283510501867432375618024430521867
DLS 3: 012345678867432501628074315254106783183750246746283150501867432375618024430521867
DLS 4: 012345678865432701628054317274106583183570246746283150501867432357618024430721865
DLS 5: 012345678867432501628074315254106783183750246745283160501867432376518024430621857
DLS 6: 012345678126783450357618042430527861805261734568134207783450126641072385274806513
DLS 7: 012345678743286150375618024560827431407531862831462507286150743628074315154703286
DLS 8: 012345678746283150375618024530827461407561832861432507283150746628074315154706283
DLS 9: 012345678567432801628074315254106783183750246746283150801567432375618024430821567
Adjacency matrix:
011110000
100001000
100001110
100001000
100001000
011110000
001000001
001000001
000000110
Different CFs set within combinatorial structure:
CF 1: 012345678123786450357618042460527831805231764538164207786450123641072385274803516
CF 2: 012345678120678534536827401785160243647253810853714026471082365364501782208436157
CF 3: 012345678120678534536827401784160253647253810853714026471082365365401782208536147
CF 4: 012345678123486750465728013654873102307614825831207564276530481548061237780152346
CF 5: 012345678120678534356827401784160253647253810835714026471082365563401782208536147
CF 6: 012345678123856407365420781804671325657138042431287560276014853748503216580762134
CF 7: 012345678120568743638754201256401837543876012781023465805637124467182350374210586
CF 8: 012345678123586740451760283840673512734258061385107426267431805506824137678012354
CF 9: 012345678120478536845603712638714250754860321367251084471032865203586147586127403
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4]
Multiset of vertices powers:
{2:6, 4:3}
121. Structure 9N12M9C
DLSs within combinatorial structure:
DLS 1: 012345678123758046845107362670831524734560281368214750257486103401672835586023417
DLS 2: 012345678431672850608214735527486103856023417285107346760831524143758062374560281
DLS 3: 012345678631472850408216735527684103856023417285107364740831526163758042374560281
DLS 4: 012345678431672850608234715527486103856021437285107346760813524143758062374560281
DLS 5: 012345678631472850408236715527684103856021437285107364740813526163758042374560281
DLS 6: 012345678126758043845107362670831524734560281368214750257483106401672835583026417
DLS 7: 012345678124758036835107462670831524743560281468213750257486103301672845586024317
DLS 8: 012345678143758026825107364670831542734560281368412750457286103201674835586023417
DLS 9: 012345678146758023825107364670831542734560281368412750457283106201674835583026417
Adjacency matrix:
011110000
100001111
100000010
100000110
100000010
010000000
010100000
011110000
010000000
Different CFs set within combinatorial structure:
CF 1: 012345678123758046845107362670831524734560281368214750257486103401672835586023417
CF 2: 012345678123458067675813240587601432401236785234587106350764821846072513768120354
CF 3: 012345678120478536367251084408512367734860251653784120271603845845036712586127403
CF 4: 012345678123478065675813240587601432401236587234587106350764821846052713768120354
CF 5: 012345678123478065675813240507681432481236507234507186350764821846052713768120354
CF 6: 012345678123487560256138704608752341570813426781064235345670812834206157467521083
CF 7: 012345678123567804865704321584612037246873510308421765731086452457230186670158243
CF 8: 012345678127406835401738562765810324658274013574163280836521407340682751283057146
CF 9: 012345678123057864264701385681570423876413502357268041435682710540826137708134256
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 3, 4, 4, 5]
Multiset of vertices powers:
{1:2, 2:3, 3:1, 4:2, 5:1}
122. Structure 9N12M9C
DLSs within combinatorial structure:
DLS 1: 012345678123508467638721504586417320807634215754086132461250783340172856275863041
DLS 2: 012345678871453026754086132203574861125867340368721504640138257436210785587602413
DLS 3: 012345678123508467368721504586417320807634215754086132431250786640172853275863041
DLS 4: 012345678127508463368721504586413720803674215754086132471250386640132857235867041
DLS 5: 012345678143508267368721504586217340807632415754086132231450786620174853475863021
DLS 6: 012345678147508263368721504586213740803672415754086132271450386620134857435867021
DLS 7: 012345678143508267638721504586217340807632415754086132261450783320174856475863021
DLS 8: 012345678871463025754086132203674851126857340368721504540138267435210786687502413
DLS 9: 012345678861473025654087132203764851127856340378621504540138267435210786786502413
Adjacency matrix:
010000000
101111100
010000010
010000011
010000010
010000011
010000000
001111000
000101000
Different CFs set within combinatorial structure:
CF 1: 012345678123508467638721504586417320807634215754086132461250783340172856275863041
CF 2: 012345678123067845648532701450726183567814230781253064835670412206481357374108526
CF 3: 012345678120586743354710286835607124678234501286071435701453862467128350543862017
CF 4: 012345678123486750378621045867534201645078312780153426456702183534210867201867534
CF 5: 012345678120678534653024187736850421584167203347281056865403712271536840408712365
CF 6: 012345678120478536653024187736850421584167203367281054845603712271536840408712365
CF 7: 012345678120678534648702153785130246367451082854263710536827401273014865401586327
CF 8: 012345678123467805605738241246853710568172034384601527731280456857014362470526183
CF 9: 012345678123467805605738241240853716568172034384601527731286450857014362476520183
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 3, 3, 4, 6]
Multiset of vertices powers:
{1:2, 2:3, 3:2, 4:1, 6:1}
123. Structure 9N14M9C
DLSs within combinatorial structure:
DLS 1: 012345678120486753508127364754610832836074125687253410241738506365801247473562081
DLS 2: 012345678361758240754680132508127364247831506476512083130476825823064751685203417
DLS 3: 012345678361728540754680132208157364547831206476512083130476825823064751685203417
DLS 4: 012345678820416753508127364754680132136074825687253410241738506365801247473562081
DLS 5: 012345678840216753508127364754680132136072845687453210421738506365801427273564081
DLS 6: 012345678140286753508127364754610832836072145687453210421738506365801427273564081
DLS 7: 012345678631758240754680132508127364247861503473512086160473825826034751385206417
DLS 8: 012345678351768240764580132608127354247831506475612083130476825823054761586203417
DLS 9: 012345678631728540754680132208157364547861203473512086160473825826034751385206417
Adjacency matrix:
011000000
100111000
100111000
011000111
011000111
011000000
000110000
000110000
000110000
Different CFs set within combinatorial structure:
CF 1: 012345678120486753508127364754610832836074125687253410241738506365801247473562081
CF 2: 012345678123658047807423516765810432540167283436281705681574320274036851358702164
CF 3: 012345678123658047807423516765810432548167203436201785681574320274036851350782164
CF 4: 012345678120567843468203751604781325845136207583074162736412580357628014271850436
CF 5: 012345678120567843468203751604721385845136207583074162736418520357682014271850436
CF 6: 012345678123487056834076125401562783276830541568721304750614832347158260685203417
CF 7: 012345678123658047807423516765810432540167283634281705481576320276034851358702164
CF 8: 012345678123658047847023516765810432504167283436281705681574320270436851358702164
CF 9: 012345678123658047807423516765810432548167203634201785481576320276034851350782164
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 4, 4, 5, 5]
Multiset of vertices powers:
{2:5, 4:2, 5:2}
124. Structure 9N14M9C
DLSs within combinatorial structure:
DLS 1: 012345678123457860657180243580623714365718402836574021274801356401236587748062135
DLS 2: 012345678836574021501236784674801253748062135123457860480623517257180346365718402
DLS 3: 012345678736584021501236784674801253847062135123457860480623517258170346365718402
DLS 4: 012345678836571024504236781671804253748062135423157860180623547257480316365718402
DLS 5: 012345678736581024504236781671804253847062135423157860180623547258470316365718402
DLS 6: 012345678123657840457180263580423716365718402831576024276804351604231587748062135
DLS 7: 012345678123457860657180243580623714365718402831574026274806351406231587748062135
DLS 8: 012345678123657840457180263580423716365718402834576021276801354601234587748062135
DLS 9: 012345678123457860857160243580623714365718402638574021274801356401236587746082135
Adjacency matrix:
011110000
100001111
100000011
100001110
100000010
010100000
010100000
011110000
011000000
Different CFs set within combinatorial structure:
CF 1: 012345678123457860657180243580623714365718402836574021274801356401236587748062135
CF 2: 012345678231584706146870532420753861568427310753168024384602157875016243607231485
CF 3: 012345678123780564675108432437862051846537120264071385581624703350216847708453216
CF 4: 012345678231584706146807532420753861568420317753168024384672150875016243607231485
CF 5: 012345678123780564675128430437862051846537102264071385581604723350216847708453216
CF 6: 012345678120487563263701485681570324574613802457268031345826710836052147708134256
CF 7: 012345678120457863263701485681570324874613502457268031345826710536082147708134256
CF 8: 012345678123657840457180263580423716365718402834576021276801354601234587748062135
CF 9: 012345678123457860857160243580623714365718402638574021274801356401236587746082135
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 4, 4, 4, 5]
Multiset of vertices powers:
{2:4, 3:1, 4:3, 5:1}
125. Structure 9N14M9C
DLSs within combinatorial structure:
DLS 1: 012345678120486753275603481634870125756014832481237560807562314563128047348751206
DLS 2: 012345678631807524467582310180426753348751206273168045524630187805273461756014832
DLS 3: 012345678634807521167582340480126753348751206273468015521630487805273164756014832
DLS 4: 012345678634807521867512340480126753348751206273468015521630487105273864756084132
DLS 5: 012345678123568047284730561705683124856014732531207486360472815478126350647851203
DLS 6: 012345678123468057285730461704683125856014732431207586360572814578126340647851203
DLS 7: 012345678126538047284760531705683124853014762531207486360472815478126350647851203
DLS 8: 012345678126438057285760431704683125853014762431207586360572814578126340647851203
DLS 9: 012345678120586743274603581635870124756014832581237460807462315463128057348751206
Adjacency matrix:
011100000
100011111
100011111
100001000
011000000
011100000
011000000
011000000
011000000
Different CFs set within combinatorial structure:
CF 1: 012345678120486753275603481634870125756014832481237560807562314563128047348751206
CF 2: 012345678120486735463058127685710342754163280876521403537204816348672051201837564
CF 3: 012345678120467853763158024287631405345876210501284736876013542634502187458720361
CF 4: 012345678120487365548612730654720183376158024867203541201836457735064812483571206
CF 5: 012345678123460857605724183761852034840576312278013546386107425534281760457638201
CF 6: 012345678120468537805726413473650182586174320768213054241037865357801246634582701
CF 7: 012345678123460857605734182761852034840576213278013546386107425534281760457628301
CF 8: 012345678120568437236407581473810256354671820768254103501782364845036712687123045
CF 9: 012345678120468537758013426387650142634872051506124783475281360863507214241736805
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 3, 3, 6, 6]
Multiset of vertices powers:
{2:5, 3:2, 6:2}
126. Structure 9N17M9C
DLSs within combinatorial structure:
DLS 1: 012345678120478536765081423351862704834217065248736150476150382607523841583604217
DLS 2: 012345678357826104608132745735481062241063857860517423583704216124678530476250381
DLS 3: 012345678257836104608123745735481062341062857860517423583704216124678530476250381
DLS 4: 012345678357826104608132745735481062241763850860517423583074216124608537476250381
DLS 5: 012345678257836104608123745735481062341762850860517423583074216124608537476250381
DLS 6: 012345678120487536865071423351862704734218065248736150476150382607523841583604217
DLS 7: 012345678120487536865071423351862704734518062248736150476120385607253841583604217
DLS 8: 012345678120478536765081423351862704834517062248736150476120385607253841583604217
DLS 9: 012345678170482536865071423351867204234718065748236150426150387607523841583604712
Adjacency matrix:
011110000
100001110
100001111
100001110
100001110
011110000
011110000
011110000
001000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536765081423351862704834217065248736150476150382607523841583604217
CF 2: 012345678120476835346851720681730452857614203705283146234108567463527081578062314
CF 3: 012345678120576834346851720681730542857614203704283156235108467563427081478062315
CF 4: 012345678120476835346851720681730452857014263705283146234168507463527081578602314
CF 5: 012345678120576834346851720681730542857014263704283156235168407563427081478602315
CF 6: 012345678120487536865071423351862704734218065248736150476150382607523841583604217
CF 7: 012345678120487536865071423351862704734518062248736150476120385607253841583604217
CF 8: 012345678120478536765081423351862704834517062248736150476120385607253841583604217
CF 9: 012345678120678345438067521385710462657234810704156283546802137873421056261583704
Ascending sorted vector of vertices powers:
[1, 4, 4, 4, 4, 4, 4, 4, 5]
Multiset of vertices powers:
{1:1, 4:7, 5:1}
127. Structure 9N18M9C
DLSs within combinatorial structure:
DLS 1: 012345678123476805451287360736852041247560183680134752304728516875601234568013427
DLS 2: 012345678380764512875601234248130756164073825536412087723856401451287360607528143
DLS 3: 012345678380764512875601234248130756564073821136452087723816405451287360607528143
DLS 4: 012345678380764512875601234248130756164873025536412807723056481451287360607528143
DLS 5: 012345678380764512875601234248130756564873021136452807723016485451287360607528143
DLS 6: 012345678126473805451287360763852041247560183680134752304728516875601234538016427
DLS 7: 012345678123476805451287360736852041347560182680124753204738516875601234568013427
DLS 8: 012345678126473805451287360763852041347560182680124753204738516875601234538016427
DLS 9: 012345678380764512175608234248130756564873021836452107723016485451287360607521843
Adjacency matrix:
011110000
100001110
100001110
100001110
100001110
011110001
011110000
011110001
000001010
Different CFs set within combinatorial structure:
CF 1: 012345678123476805451287360736852041247560183680134752304728516875601234568013427
CF 2: 012345678123567840307486152745823061684152703468031527836270415570618234251704386
CF 3: 012345678123480756684751302750826431378612045546273810267104583801537264435068127
CF 4: 012345678123856407356408721608723154870512346781234560245670813564187032437061285
CF 5: 012345678123480756584761302750826431378612045645273810267104583801537264436058127
CF 6: 012345678120678543768534201587421036641053782835706124476182350203867415354210867
CF 7: 012345678120467835578013426463781250634852701857206314246530187301678542785124063
CF 8: 012345678120487536785634120573816042648570213436021785864752301351208467207163854
CF 9: 012345678124638705536807421481752360870213546608524137253076814367481052745160283
Ascending sorted vector of vertices powers:
[2, 4, 4, 4, 4, 4, 4, 5, 5]
Multiset of vertices powers:
{2:1, 4:6, 5:2}
128. Structure 9N21M6C
DLSs within combinatorial structure:
DLS 1: 012345678143607825365482710681754032407218356728036541856173204230561487574820163
DLS 2: 012345678365428701204517386837102564780654132456783210571260843143876025628031457
DLS 3: 012345678857063214428176503145630827374821065230457186603718452561284730786502341
DLS 4: 012345678728156340683721054254873106831560427507214863465032781376408512140687235
DLS 5: 012345678684731052531068427473586210256473801865102734140827365728650143307214586
DLS 6: 012345678784136052537018426473581260251463807865702134640827315128650743306274581
DLS 7: 012345678571280463756803241360421785628037514143568027287654130804712356435176802
DLS 8: 012345678375280461756801243160423785628057134543168027287614350804732516431576802
DLS 9: 012345678143607825365182704684750132407218356728436510856073241231564087570821463
Adjacency matrix:
011111110
101110100
110110100
111010100
111100101
100000001
111110001
100000001
000011110
Different CFs set within combinatorial structure:
CF 1: 012345678143607825365482710681754032407218356728036541856173204230561487574820163
CF 2: 012345678123580467346278105581764023470851236764023581657132840835406712208617354
CF 3: 012345678123486507564017283708634152356271840247158036475820361830562714681703425
CF 4: 012345678123078564785213046468701352546830127870456213607182435351624780234567801
CF 5: 012345678123078564785231046468703152546810327871456230637182405350624781204567813
CF 6: 012345678143607825365182704684750132407218356728436510856073241231564087570821463
Ascending sorted vector of vertices powers:
[2, 2, 4, 5, 5, 5, 6, 6, 7]
Multiset of vertices powers:
{2:2, 4:1, 5:3, 6:2, 7:1}
129. Structure 10N9M4C
DLSs within combinatorial structure:
DLS 1: 012345678123658704845723160634812057708561243261407385587230416450176832376084521
DLS 2: 012345678348017265103476582726583401584620137657138024260851743875264310431702856
DLS 3: 012345678723651804845123760634812057107568243268407315571230486450786132386074521
DLS 4: 012345678753621804824153760635812047107268453468507312571430286240786135386074521
DLS 5: 012345678753821406628153740835412067107264853486507312571630284240786135364078521
DLS 6: 012345678153628704824753160635812047708261453461507382587430216240176835376084521
DLS 7: 012345678340817265183476052726503481854620137607138524265081743578264310431752806
DLS 8: 012345678348017265103486527876523401584670132657132084260751843725864310431208756
DLS 9: 012345678140873265387416052726501483854620137601738524265087341538264710473152806
DLS 10: 012345678148073265307416582726581403584620137651738024260857341835264710473102856
Adjacency matrix:
0100000000
1011110000
0100000000
0100001111
0100000000
0100000000
0001000000
0001000000
0001000000
0001000000
Different CFs set within combinatorial structure:
CF 1: 012345678123658704845723160634812057708561243261407385587230416450176832376084521
CF 2: 012345678230167845658473012785612403371054286846721530423508761564830127107286354
CF 3: 012345678126508734547830162260417853378051246853276410784162305401623587635784021
CF 4: 012345678123058764678514032230467851587130246304276185741682503856723410465801327
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 5, 5]
Multiset of vertices powers:
{1:8, 5:2}
130. Structure 10N9M4C
DLSs within combinatorial structure:
DLS 1: 012345678230176854685214307756482031108567423347028165821653740574830216463701582
DLS 2: 012345678367208145103476582675830214854021367428157036586712403231684750740563821
DLS 3: 012345678834176250625810347756204831180567423347028165401653782578432016263781504
DLS 4: 012345678270536814681254703136482057508763421347028165823671540754810236465107382
DLS 5: 012345678874536210621850743136204857580763421347028165403671582758412036265187304
DLS 6: 012345678756082134304517286571820463823671540438156702265408317140763825687234051
DLS 7: 012345678537214860746851302683407251374126085125078436801762543258630714460583127
DLS 8: 012345678746083125403217586571820463825671340258136704364508217130764852687452031
DLS 9: 012345678748163025463287510571820463625078341250631784384516207836704152107452836
DLS 10: 012345678758162034364587210571820463623078541430651782285416307846703125107234856
Adjacency matrix:
0100000000
1011100000
0100000000
0100000000
0100010000
0000101000
0000010111
0000001000
0000001000
0000001000
Different CFs set within combinatorial structure:
CF 1: 012345678230176854685214307756482031108567423347028165821653740574830216463701582
CF 2: 012345678230467851165784320703652184847210536456038217524801763378126045681573402
CF 3: 012345678123058764648173052256704813865437120704216385431862507370581246587620431
CF 4: 012345678123587460487026531871602354568431027306154782250713846645870213734268105
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 4, 4]
Multiset of vertices powers:
{1:6, 2:2, 4:2}
131. Structure 10N9M5C
DLSs within combinatorial structure:
DLS 1: 012345678120468357845637201536810724208576413784103562673024185367251840451782036
DLS 2: 012345678735180246276413580843751062164027835450638127587206413601872354328564701
DLS 3: 012345678127568304803674251456813720278456013385107462634720185560231847741082536
DLS 4: 012345678680427351745832106536170824207568413164703582873014265328651740451286037
DLS 5: 012345678738162045876413250243701586164057832425638107657280413501876324380524761
DLS 6: 012345678576813024431026587758604231825431706240178365367582410104267853683750142
DLS 7: 012345678837401256285674301473850162764123085351786420506218743648032517120567834
DLS 8: 012345678837402165186274350473860512704653281325781406651028743548136027260517834
DLS 9: 012345678726514830467820153350486721138657402845031267684702315571263084203178546
DLS 10: 012345678526814037461027583358406721835671402740138265674582310107263854283750146
Adjacency matrix:
0100000000
1011000000
0100000000
0100110000
0001000000
0001001100
0000010011
0000010000
0000001000
0000001000
Different CFs set within combinatorial structure:
CF 1: 012345678120468357845637201536810724208576413784103562673024185367251840451782036
CF 2: 012345678124038765657182340781564023346817502835206417460723851278450136503671284
CF 3: 012345678123508746234786105607813254541062387386257410870124563458671032765430821
CF 4: 012345678124037856867152403751683042348510267403268715230476581576824130685701324
CF 5: 012345678123508746504672183286710534458137260731286405365024817870461352647853021
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 3, 3, 3, 3]
Multiset of vertices powers:
{1:6, 3:4}
132. Structure 10N9M9C
DLSs within combinatorial structure:
DLS 1: 012345678123086547478502163751420836387261450546713082605834721830657214264178305
DLS 2: 012345678758214306236071584543806712604738125860127453187453260321560847475682031
DLS 3: 012345678126053847874602135761520384387261450453718062605834721530487216248176503
DLS 4: 012345678125063847574802136781620354367251480453718062806534721630487215248176503
DLS 5: 012345678124056837873402165731520486487261350356718042605834721540687213268173504
DLS 6: 012345678574218306736851240203486715648530127860172453187023564351764082425607831
DLS 7: 012345678584217306736851240207436815648570123360182457173028564851764032425603781
DLS 8: 012345678574218036756831240230486715648053127865172403187520364301764582423607851
DLS 9: 012345678578214306736051284243806715604538127860172453187423560351760842425687031
DLS 10: 012345678754218306236871540503486712648730125860127453187053264321564087475602831
Adjacency matrix:
0100000000
1011100000
0100011111
0100000000
0100000000
0010000000
0010000000
0010000000
0010000000
0010000000
Different CFs set within combinatorial structure:
CF 1: 012345678123086547478502163751420836387261450546713082605834721830657214264178305
CF 2: 012345678123458760675032481481763025768214503840576312357120846504681237236807154
CF 3: 012345678120478536347580261263801745405763812658014327734652180871236054586127403
CF 4: 012345678123560847374208156435817062567132480781026534806453721650784213248671305
CF 5: 012345678123460857347856021236584710450738162685271304871602435564017283708123546
CF 6: 012345678120476835374680251705831426263158047586027314437562180841703562658214703
CF 7: 012345678120578346856417203237850461785634012648721530401263785364102857573086124
CF 8: 012345678120576834374680215705834126263418057586027341437162580851703462648251703
CF 9: 012345678123458760675832041801763425764210583480576312357124806548601237236087154
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 4, 6]
Multiset of vertices powers:
{1:8, 4:1, 6:1}
133. Structure 10N9M10C
DLSs within combinatorial structure:
DLS 1: 012345678123870564564281703876503142438016257681427035745168320307652481250734816
DLS 2: 012345678487562310821673045250716834643857102506234781374081256138420567765108423
DLS 3: 012345678123470865564201783476853102835016247681527430750168324347682051208734516
DLS 4: 012345678485612307641738250837201546168573024203456781526087413750164832374820165
DLS 5: 012345678487512306751638240634201785168753024203476851526087413870164532345820167
DLS 6: 012345678287563410421678035850716324643857102506234781374081256138420567765102843
DLS 7: 012345678268034517305786421857120364641572830430618752183457206726803145574261083
DLS 8: 012345678850126437208734516387612054546871320425063781634287105761508243173450862
DLS 9: 012345678346780251568102743705234816271563084837051462683417520420876135154628307
DLS 10: 012345678876054231165420783543872106387261045728103564630518427254736810401687352
Adjacency matrix:
0100000000
1010000000
0101111100
0010000000
0010000000
0010000011
0010000000
0010000000
0000010000
0000010000
Different CFs set within combinatorial structure:
CF 1: 012345678123870564564281703876503142438016257681427035745168320307652481250734816
CF 2: 012345678123587046748120365481632507506714823867053412235406781374861250650278134
CF 3: 012345678120476835831527046473851260254768301568203417685014723347680152706132584
CF 4: 012345678123860754786051423548723160365218047871604532457182306604537281230476815
CF 5: 012345678123758046874603251245860137658412703360527814586174320437081562701236485
CF 6: 012345678123680745548126307481732056607514823875063412236407581354871260760258134
CF 7: 012345678123786450675108324841672503580213746756034182307421865264857031438560217
CF 8: 012345678120476835804132756437581260351768024568027413685214307743650182276803541
CF 9: 012345678123758460845126037451637802706813254670284315384560721237401586568072143
CF 10: 012345678143528706876054312524867031308712465657203184785631240261470853430186527
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 2, 3, 6]
Multiset of vertices powers:
{1:7, 2:1, 3:1, 6:1}
134. Structure 10N10M10C
DLSs within combinatorial structure:
DLS 1: 012345678123587046657410382508631427276058134831264705340726851465873210784102563
DLS 2: 012345678861734250308651427157460382435826701524187063783502146276018534640273815
DLS 3: 012345678861734250308651427157460382435826701526187043783502164274018536640273815
DLS 4: 012345678861234750308651427157460382435876201574182063283507146726018534640723815
DLS 5: 012345678861234750308651427157460382435876201576182043283507164724018536640723815
DLS 6: 012345678860734251308651427157460382435826710524187063783502146276018534641273805
DLS 7: 012345678860734251308651427157460382435826710526187043783502164274018536641273805
DLS 8: 012345678860234751308651427157460382435876210574182063283507146726018534641723805
DLS 9: 012345678860234751308651427157460382435876210576182043283507164724018536641723805
DLS 10: 012345678123587046675410382708631425256078134831264507340726851467853210584102763
Adjacency matrix:
0111111110
1000000001
1000000000
1000000000
1000000000
1000000001
1000000000
1000000000
1000000000
0100010000
Different CFs set within combinatorial structure:
CF 1: 012345678123587046657410382508631427276058134831264705340726851465873210784102563
CF 2: 012345678120487536348671025483502167657014382805736214234860751761253840576128403
CF 3: 012345678120487536348671025483502167657014382205736814834260751761853240576128403
CF 4: 012345678120467835784153026635824701408712563357206184846570312273681450561038247
CF 5: 012345678120476835784152063235864701408613527356207184647580312863721450571038246
CF 6: 012345678120487563348671025486502137657014382805763214264830751731256840573128406
CF 7: 012345678120486357875061243483750126634517082208673415567204831741832560356128704
CF 8: 012345678120576834784152063235864701478613520346207185657480312863021457501738246
CF 9: 012345678120476835784152063235864701478613520356207184647580312863021457501738246
CF 10: 012345678123587046675410382708631425256078134831264507340726851467853210584102763
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 2, 8]
Multiset of vertices powers:
{1:6, 2:3, 8:1}
135. Structure 10N11M10C
DLSs within combinatorial structure:
DLS 1: 012345678120483765384162057675804132846570321753216804201738546438657210567021483
DLS 2: 012345678374058216645803721783162540268731054501624387120476835857210463436587102
DLS 3: 012345678128463705364082157875614032641578320753201864286730541430157286507826413
DLS 4: 012345678128563704364082157875614032651478320743201865286730541430157286507826413
DLS 5: 012345678120583764384162057675804132856470321743216805201738546438657210567021483
DLS 6: 012345678120483765384162057675804132846570321753216804261738540438057216507621483
DLS 7: 012345678120583764384162057675804132856470321743216805261738540438057216507621483
DLS 8: 012345678374058216546803721783162540258731064601524387120476835867210453435687102
DLS 9: 012345678374851206645083721783612540261738054508124367826470135157206483430567812
DLS 10: 012345678374856201145083726783612540261738054508124367826470135657201483430567812
Adjacency matrix:
0100000000
1011111000
0100000100
0100000000
0100000011
0100000000
0100000011
0010000000
0000101000
0000101000
Different CFs set within combinatorial structure:
CF 1: 012345678120483765384162057675804132846570321753216804201738546438657210567021483
CF 2: 012345678123408765657014382580127436348652107834276510261730854705863241476581023
CF 3: 012345678120478536367180245753864021684513702435026187846752310278601453501237864
CF 4: 012345678120687453867453210245801367751234806584076132306712584673128045438560721
CF 5: 012345678120483765538716024867504231476130582683257140201678453354062817745821306
CF 6: 012345678120483765384162057675804132846570321753216804261738540438057216507621483
CF 7: 012345678120483765538716024267504831476130582683257140801672453354068217745821306
CF 8: 012345678123408765657013482580127346468751023834276510241630857705864231376582104
CF 9: 012345678123658407657032184580174263348561720864713052475206831731820546206487315
CF 10: 012345678123468750365820147546712083408637521281076435734501862870254316657183204
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 3, 3, 6]
Multiset of vertices powers:
{1:4, 2:3, 3:2, 6:1}
136. Structure 10N11M10C
DLSs within combinatorial structure:
DLS 1: 012345678231658704586071342175436820607823415348107256864210537450762183723584061
DLS 2: 012345678623784051308127465847503216485671302571236840750462183264810537136058724
DLS 3: 012345678267158304581036742753461820106823457348507261874210536430672185625784013
DLS 4: 012345678236158704581076342675431820107823465348607251864210537450762183723584016
DLS 5: 012345678276158304581036742635471820103827465748603251864210537450762183327584016
DLS 6: 012345678271658304586031742135476820603827415748103256864210537450762183327584061
DLS 7: 012345678653784120328507461847123056480672315571036842705461283264810537136258704
DLS 8: 012345678653784210328507461847213056480671325571036842705462183164820537236158704
DLS 9: 012345678623784051308127465847513206485670312571236840750462183264801537136058724
DLS 10: 012345678267158304581063742756431820103826457348507261874210536430672185625784013
Adjacency matrix:
0100000000
1011110000
0100001100
0100000010
0100000010
0100000000
0010000001
0010000001
0001100000
0000001100
Different CFs set within combinatorial structure:
CF 1: 012345678231658704586071342175436820607823415348107256864210537450762183723584061
CF 2: 012345678123568047658720134701486253864053712436217805540172386275831460387604521
CF 3: 012345678230486715625071384463750821571864203147208536384527160856132047708613452
CF 4: 012345678231806745657214380573682014324751806406178532180527463865430127748063251
CF 5: 012345678231806745756214380563782014148657203407168532380521467875430126624073851
CF 6: 012345678231758460706581324850164732584276013478032156365427801623810547147603285
CF 7: 012345678124568037658730421701486352863052714346127805530274186475813260287601543
CF 8: 012345678124568037651870243863701452437052861278436105546287310305124786780613524
CF 9: 012345678123560847608714325586471032274853160357206481430128756865037214741682503
CF 10: 012345678230586714624071385463750821571864203157208436385427160846132057708613542
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 3, 5]
Multiset of vertices powers:
{1:2, 2:6, 3:1, 5:1}
137. Structure 10N12M5C
DLSs within combinatorial structure:
DLS 1: 012345678123476805586014723658703142347851260704238516231560487865127034470682351
DLS 2: 012345678781230546347851260523467801856014723178526034460782315234608157605173482
DLS 3: 012345678423176805586014723658703412347851260701238546234560187865427031170682354
DLS 4: 012345678423176805856014723685703412347851260701238546234560187568427031170682354
DLS 5: 012345678123476805856014723685703142347851260704238516231560487568127034470682351
DLS 6: 012345678781260543347851260526437801853014726178526034460782315234608157605173482
DLS 7: 012345678781260453347851260426537801853014726178426035560782314235608147604173582
DLS 8: 012345678781230456347851260423567801856014723178426035560782314235608147604173582
DLS 9: 012345678423176805865014723586703412347861250701238546234650187658427031170582364
DLS 10: 012345678123476805865014723586703142347861250704238516231650487658127034470582361
Adjacency matrix:
0100000000
1011100000
0100000000
0100011100
0100011100
0001100000
0001100000
0001100011
0000000100
0000000100
Different CFs set within combinatorial structure:
CF 1: 012345678123476805586014723658703142347851260704238516231560487865127034470682351
CF 2: 012345678120483756536871402374152860758630241865724013281067534407216385643508127
CF 3: 012345678123476805865014723586703142347861250704238516231650487658127034470582361
CF 4: 012345678123476805856014723685703142347851260704238516231560487568127034470682351
CF 5: 012345678120483756736851402354172860578630241865724013281067534407216385643508127
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 4, 4, 4, 4]
Multiset of vertices powers:
{1:4, 2:2, 4:4}
138. Structure 10N12M8C
DLSs within combinatorial structure:
DLS 1: 012345678123057846251630784864572103547863021476108352735281460608714235380426517
DLS 2: 012345678567834012804517236645183720280476153738062541126758304351620487473201865
DLS 3: 012345678765834012804517236647183520280476153538062741126758304351620487473201865
DLS 4: 012345678865734012704518236647183520280476153538062741126857304351620487473201865
DLS 5: 012345678567824013804517236645183720380476152738062541126758304251630487473201865
DLS 6: 012345678765824013804517236647183520380476152538062741126758304251630487473201865
DLS 7: 012345678865724013704518236647183520380476152538062741126857304251630487473201865
DLS 8: 012345678123057846251603784864572103547860321476138052735281460608714235380426517
DLS 9: 012345678523017846251603784864572103147860325476138052735281460608754231380426517
DLS 10: 012345678523017846251630784864572103147863025476108352735281460608754231380426517
Adjacency matrix:
0111111000
1000000000
1000000111
1000000000
1000000000
1000000111
1000000000
0010010000
0010010000
0010010000
Different CFs set within combinatorial structure:
CF 1: 012345678123057846251630784864572103547863021476108352735281460608714235380426517
CF 2: 012345678120483567658702314843657102387210456731564820564021783405876231276138045
CF 3: 012345678123856740645287031867412305754061283480573162531704826278630514306128457
CF 4: 012345678120483567658720314843657102387012456731564820564201783405876231276138045
CF 5: 012345678120576843685014327768432015874163250253708164341250786407681532536827401
CF 6: 012345678123057846251603784864572103547860321476138052735281460608714235380426517
CF 7: 012345678123076845671523084406852317854760132587134206345281760238607451760418523
CF 8: 012345678123057864351620487476802351264578103847163025780436512635281740508714236
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 4, 4, 6]
Multiset of vertices powers:
{1:4, 2:3, 4:2, 6:1}
139. Structure 10N12M8C
DLSs within combinatorial structure:
DLS 1: 012345678123407856358126407807561324640873215761034582486752130534280761275618043
DLS 2: 012345678531268704764801523186723450375610842250486137807534261423157086648072315
DLS 3: 012345678531268407467801523186423750375610842250786134804537261723154086648072315
DLS 4: 012345678423107856358426107807564321640873215764031582186752430531280764275618043
DLS 5: 012345678423107865358426107807654321540873216764031582185762430631280754276518043
DLS 6: 012345678123407865358126407807651324540873216761034582485762130634280751276518043
DLS 7: 012345678423107856358426107807564321640873215764031582586712430135280764271658043
DLS 8: 012345678423107865358426107807654321540873216764031582685712430136280754271568043
DLS 9: 012345678423607851358426107807514326640873215764031582186752430531280764275168043
DLS 10: 012345678423507861358426107807614325540873216764031582185762430631280754276158043
Adjacency matrix:
0110000000
1001110000
1001111111
0110000000
0110000000
0110000000
0010000000
0010000000
0010000000
0010000000
Different CFs set within combinatorial structure:
CF 1: 012345678123407856358126407807561324640873215761034582486752130534280761275618043
CF 2: 012345678123458760875160243234681507507234186681507432460723851346872015758016324
CF 3: 012345678123458760875160243234601587587234106601587432460723851346872015758016324
CF 4: 012345678120678534263851047408732165784560213875104326357416802641283750536027481
CF 5: 012345678120678534263851047408732165784560213835104726357416802641287350576023481
CF 6: 012345678123407865358126407807651324540873216761034582485762130634280751276518043
CF 7: 012345678120678534263851047708432165487560213845107326354716802671283450536024781
CF 8: 012345678120678534263851047708432165487560213835107426354716802671284350546023781
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 4, 8]
Multiset of vertices powers:
{1:4, 2:4, 4:1, 8:1}
140. Structure 10N12M10C
DLSs within combinatorial structure:
DLS 1: 012345678120487536783562014401836752648751203567124380834670125375208461256013847
DLS 2: 012345678581063724157206483620487531273814065834652107765128340406731852348570216
DLS 3: 012345678120487563786532014301864752438751206567123480843670125675208341254016837
DLS 4: 012345678120687543784532016401863752368751204547126380836470125675208431253014867
DLS 5: 012345678120487563786532014401863752348751206567124380834670125675208431253016847
DLS 6: 012345678120487536583762014401836752648571203765124380834650127357208461276013845
DLS 7: 012345678120487563586732014301864752438571206765123480843650127657208341274016835
DLS 8: 012345678120687543584732016401863752368571204745126380836450127657208431273014865
DLS 9: 012345678120487563586732014401863752348571206765124380834650127657208431273016845
DLS 10: 012345678581063724127506483650487231273814065834652107765128340406731852348270516
Adjacency matrix:
0100000000
1011111110
0100000000
0100000000
0100000000
0100000001
0100000001
0100000001
0100000001
0000011110
Different CFs set within combinatorial structure:
CF 1: 012345678120487536783562014401836752648751203567124380834670125375208461256013847
CF 2: 012345678123486750845671203670124835457063182234758016581207364706832541368510427
CF 3: 012345678120476835743681250251837046437560182865104723374028561608752314586213407
CF 4: 012345678120687543438076251863501724574163082281754306745238160607812435356420817
CF 5: 012345678120476835743681250251837046437560182865124703374208561608752314586013427
CF 6: 012345678120487536583761024405836712641570283768124350834652107357208461276013845
CF 7: 012345678120476835743681250251837046437560182685104723374028561806752314568213407
CF 8: 012345678120487563586731024305864712431570286768123450843652107657208341274016835
CF 9: 012345678120476835743681250251837046437560182685124703374208561806752314568013427
CF 10: 012345678120486753845671230673124805457063182234758016581207364706832541368510427
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 4, 8]
Multiset of vertices powers:
{1:4, 2:4, 4:1, 8:1}
141. Structure 10N13M10C
DLSs within combinatorial structure:
DLS 1: 012345678120483756468702135831564207645078312357621084783156420504237861276810543
DLS 2: 012345678231804567645078312186450723378612045504267831867531204753126480420783156
DLS 3: 012345678231804567645078312786450123378612045504267831867531204153726480420183756
DLS 4: 012345678150483726468702135831264507645078312327651084783126450204537861576810243
DLS 5: 012345678120438756468702135831564207645073812357621084783156420504287361276810543
DLS 6: 012345678150438726468702135831264507645073812327651084783126450204587361576810243
DLS 7: 012345678753216840371684025407862531625078314240153786186720453834501267568437102
DLS 8: 012345678756213840371684025407832561625078314240156783183720456864501237538467102
DLS 9: 012345678576810243384627051723156480108432765435768102861204537657081324240573816
DLS 10: 012345678234801567645078312786450123378612045501267834867534201153726480420183756
Adjacency matrix:
0110000000
1001110000
1001111100
0110000010
0110000000
0110000000
0010000001
0010000001
0001000000
0000001100
Different CFs set within combinatorial structure:
CF 1: 012345678120483756468702135831564207645078312357621084783156420504237861276810543
CF 2: 012345678120487563687201435365170284874653102453768021741826350536012847208534716
CF 3: 012345678123480756675018342567834201348672015750126483486753120804261537231507864
CF 4: 012345678120437856435781260851603724543876012786124305264058137307562481678210543
CF 5: 012345678120438756468702135831564207645073812357621084783156420504287361276810543
CF 6: 012345678120437856435781260851603724243876015786154302564028137307562481678210543
CF 7: 012345678127583064368710425683421507540872316754036281475268130836104752201657843
CF 8: 012345678123867054756208431847520316560134782384671205431756820675082143208413567
CF 9: 012345678124657803658403721580732164376018245731564082843276510265180437407821356
CF 10: 012345678123780456675018342567834201348672015450126783786453120804261537231507864
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 2, 2, 2, 3, 4, 6]
Multiset of vertices powers:
{1:1, 2:6, 3:1, 4:1, 6:1}
142. Structure 10N14M5C
DLSs within combinatorial structure:
DLS 1: 012345678120568743283476015457182360746051832835607124561823407674230581308714256
DLS 2: 012345678851273460374860521285604137108437256467128305640512783523786014736051842
DLS 3: 012345678851273460374810526285604137608437251467128305140562783523786014736051842
DLS 4: 012345678541023867378264501825607134150738246467182350684510723703856412236471085
DLS 5: 012345678541023867378214506825607134650738241467182350184560723703856412236471085
DLS 6: 012345678120568743783426015457182360246051837835607124561873402674230581308714256
DLS 7: 012345678120568743783426015458172360246051837835607124561783402674230581307814256
DLS 8: 012345678824516730763820415157482306236154087385067124501673842478201563640738251
DLS 9: 012345678824516730263870415157482306736154082385067124501623847478201563640738251
DLS 10: 012345678541023867378264501825617034150738246467182350684501723703856412236470185
Adjacency matrix:
0111100000
1000010000
1000011000
1000010110
1000010110
0111100000
0010000000
0001100000
0001100001
0000000010
Different CFs set within combinatorial structure:
CF 1: 012345678120568743283476015457182360746051832835607124561823407674230581308714256
CF 2: 012345678120487563581764320803671245648253017736018452364520781475102836257836104
CF 3: 012345678120483765704156283683524107548670312867031524431762850256807431375218046
CF 4: 012345678120568743783426015457182360246051837835607124561873402674230581308714256
CF 5: 012345678120568743683724015835607124247150836476281350501873462764032581358416207
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 3, 3, 4, 4, 4, 4]
Multiset of vertices powers:
{1:2, 2:2, 3:2, 4:4}
143. Structure 10N14M10C
DLSs within combinatorial structure:
DLS 1: 012345678123457806354186720476803152507264381830571264761028543648712035285630417
DLS 2: 012345678361870542847501236138257064285036417623184705456713820704628153570462381
DLS 3: 012345678361820547847501236138257064785036412623184705456713820204678153570462381
DLS 4: 012345678527418306758136420406783152130264785384501267861027534673852041245670813
DLS 5: 012345678127458306758136420406783152530264781384501267861027534673812045245670813
DLS 6: 012345678523417806354186720476803152107264385830571264761028543648752031285630417
DLS 7: 012345678523417806354186720406873152170264385837501264761028543648752031285630417
DLS 8: 012345678123457806354186720406873152570264381837501264761028543648712035285630417
DLS 9: 012345678523417806384156720476803152107264385830571264761028543645782031258630417
DLS 10: 012345678523417806384156720406873152170264385837501264761028543645782031258630417
Adjacency matrix:
0110000000
1001111100
1001111111
0110000000
0110000000
0110000000
0110000000
0110000000
0010000000
0010000000
Different CFs set within combinatorial structure:
CF 1: 012345678123457806354186720476803152507264381830571264761028543648712035285630417
CF 2: 012345678123457806304186752456873120570264381867501243731028564648712035285630417
CF 3: 012345678123408765801236457467852103546073812785164320630721584254687031378510246
CF 4: 012345678120487365804163257736524180543876012685031724461752803257608431378210546
CF 5: 012345678120486753681753420804561237368274015475038162756120384537602841243817506
CF 6: 012345678123408765781236450537862104645073812806154327460721583254687031378510246
CF 7: 012345678123408765781236450637852104546073812805164327460721583254687031378510246
CF 8: 012345678123457806354186720406873152570264381837501264761028543648712035285630417
CF 9: 012345678123750864384561027645182730208674513756438102461027385837206451570813246
CF 10: 012345678123780564384561027648152730205674813756438102461027385837206451570813246
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 6, 8]
Multiset of vertices powers:
{1:2, 2:6, 6:1, 8:1}
144. Structure 10N14M10C
DLSs within combinatorial structure:
DLS 1: 012345678123758046845107362634871520371560284760234851257486103408612735586023417
DLS 2: 012345678431672850608214735823456107587023416256187043760831524145708362374560281
DLS 3: 012345678431672850608214735523486107857023416286157043760831524145708362374560281
DLS 4: 012345678431672850608234715823456107587021436256187043760813524145708362374560281
DLS 5: 012345678431672850608234715523486107857021436286157043760813524145708362374560281
DLS 6: 012345678126758043845107362634871520371560284760234851257483106408612735583026417
DLS 7: 012345678126758043845107362674831520731560284360274851257483106408612735583026417
DLS 8: 012345678123758046845107362674831520731560284360274851257486103408612735586023417
DLS 9: 012345678431672850608234715523406187857021436286157043760813524145780362374568201
DLS 10: 012345678431672850608214735523406187857023416286157043760831524145780362374568201
Adjacency matrix:
0111100000
1000011100
1000011100
1000000100
1000000100
0110000000
0110000000
0111100011
0000000100
0000000100
Different CFs set within combinatorial structure:
CF 1: 012345678123758046845107362634871520371560284760234851257486103408612735586023417
CF 2: 012345678127508463364781502405817326580634217738026145851260734643172850276453081
CF 3: 012345678120567834876134502743802156354678021265413780531280467408756213687021345
CF 4: 012345678126578043674852130283107564751460382465283701340726815837014256508631427
CF 5: 012345678120567834876134502743812056354678120265403781531280467408756213687021345
CF 6: 012345678123508467304781526465813702580674213758026134871260345647132850236457081
CF 7: 012345678120463857246751380863514702534876021375208164751082436408637215687120543
CF 8: 012345678120567834276134580543802167354678021865413702731280456408756213687021345
CF 9: 012345678120567834876124503743812056354678120265403781531280467408756312687031245
CF 10: 012345678120567834876124503743802156354678021265413780531280467408756312687031245
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 4, 4, 4, 6]
Multiset of vertices powers:
{1:2, 2:4, 4:3, 6:1}
145. Structure 10N14M10C
DLSs within combinatorial structure:
DLS 1: 012345678120678435783560214236481057301852746864017523457136802548723160675204381
DLS 2: 012345678248163750176204385507826143835017462651732804360478521724581036483650217
DLS 3: 012345678120578436783650214235481067301862745864017523457136802648723150576204381
DLS 4: 012345678120678435483560217236781054301852746867014523754136802578423160645207381
DLS 5: 012345678120578436483650217235781064301862745867014523754136802678423150546207381
DLS 6: 012345678248163750176284305507826143853017462631752084360478521724501836485630217
DLS 7: 012345678248163750176204385507826143753018462631752804360487521824571036485630217
DLS 8: 012345678248163750176204385507826143853017462631752804360478521724581036485630217
DLS 9: 012345678248163750176284305507826143835017462651732084360478521724501836483650217
DLS 10: 012345678248163750176204385507826143735018462651732804360487521824571036483650217
Adjacency matrix:
0100000000
1011100000
0100011111
0100000000
0100011111
0010100000
0010100000
0010100000
0010100000
0010100000
Different CFs set within combinatorial structure:
CF 1: 012345678120678435783560214236481057301852746864017523457136802548723160675204381
CF 2: 012345678120476853754680132681502347547831206263758410836014725308127564475263081
CF 3: 012345678120568734348257061736412580281073456805136247564781302457620813673804125
CF 4: 012345678120678435483560217236781054301852746867014523754136802578423160645207381
CF 5: 012345678120568734368257041734612580281073456805134267546781302657420813473806125
CF 6: 012345678123750864765823140637402581586174203241068735804516327458637012370281456
CF 7: 012345678120568743736214580683470152548631207804157326457026831365782014271803465
CF 8: 012345678123750864785623140637402581568174203241068735804516327456837012370281456
CF 9: 012345678120476853574680132681502347745831206263758410836014725308127564457263081
CF 10: 012345678120476853754680132681502347247831506563728410836014725308157264475263081
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 4, 6, 6]
Multiset of vertices powers:
{1:2, 2:5, 4:1, 6:2}
146. Structure 10N16M5C
DLSs within combinatorial structure:
DLS 1: 012345678120478536734861250508127463847653012273016845651780324365204781486532107
DLS 2: 012345678473582160586123407745860231601734825360251784827406513258017346134678052
DLS 3: 012345678473512860586123407745860231608734125360251784827406513251087346134678052
DLS 4: 012345678860273514734861250506187423327456081478032165253710846145608732681524307
DLS 5: 012345678130478526724861350508137462847652013273016845651780234365204781486523107
DLS 6: 012345678867203514734861250506187423320456781478032165253710846145678032681524307
DLS 7: 012345678127408536734861250508127463840653712273016845651780324365274081486532107
DLS 8: 012345678137408526724861350508137462840652713273016845651780234365274081486523107
DLS 9: 012345678453782160586123407764850231601537824340271586825604713278016345137468052
DLS 10: 012345678453712860586123407764850231608537124340271586825604713271086345137468052
Adjacency matrix:
0110000000
1001111100
1001111100
0110000011
0110000000
0110000011
0110000000
0110000000
0001010000
0001010000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536734861250508127463847653012273016845651780324365204781486532107
CF 2: 012345678230781465456827310723160584608453127341278056584602731875016243167534802
CF 3: 012345678123487056807561234761824503375610842486753120250136487534208761648072315
CF 4: 012345678123487056258136407485762130376510842761024583807651324534208761640873215
CF 5: 012345678123768450876012345784531206201876534538204761460153827345687012657420183
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 6, 6]
Multiset of vertices powers:
{2:6, 4:2, 6:2}
147. Structure 10N16M8C
DLSs within combinatorial structure:
DLS 1: 012345678123476805865120437684751023548632710370218546436807152257084361701563284
DLS 2: 012345678230718546704561283146820357381457062427136805563284710875603124658072431
DLS 3: 012345678231708546704561283146820357380457162427136805563284710875613024658072431
DLS 4: 012345678123476805856120437584761023648532710370218546435807162267084351701653284
DLS 5: 012345678643072851856120437584701263168234705371658024230817546427586310705463182
DLS 6: 012345678123486705865120437684751023547632810370218546436807152258074361701563284
DLS 7: 012345678123486705856120437584761023647532810370218546435807162268074351701653284
DLS 8: 012345678643082751856120437584701263167234805371658024230817546428576310705463182
DLS 9: 012345678370218546704561283126830457481753062243176805567482310835607124658024731
DLS 10: 012345678371208546704561283126830457480753162243176805567482310835617024658024731
Adjacency matrix:
0110000000
1001111100
1001111100
0110000000
0110000011
0110000000
0110000000
0110000011
0000100100
0000100100
Different CFs set within combinatorial structure:
CF 1: 012345678123476805865120437684751023548632710370218546436807152257084361701563284
CF 2: 012345678124657803735168420406781532578036241683524017857203164360412785241870356
CF 3: 012345678123476805856120437584761023648532710370218546435807162267084351701653284
CF 4: 012345678235186740427608351568472013106853427784061235351724806873210564640537182
CF 5: 012345678123486705865120437684751023547632810370218546436807152258074361701563284
CF 6: 012345678123486705856120437584761023647532810370218546435807162268074351701653284
CF 7: 012345678235186740407628351568472013126853407784061235351704826873210564640537182
CF 8: 012345678123687450876012345784531206201876534538204761460153827345768012657420183
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 6, 6]
Multiset of vertices powers:
{2:6, 4:2, 6:2}
148. Structure 10N16M8C
DLSs within combinatorial structure:
DLS 1: 012345678123570846857014263508623417346851720674108352430762185265487031781236504
DLS 2: 012345678784602531346851720271436805857014263530267184625180347103728456468573012
DLS 3: 012345678785602431346851720271536804857014263430267185624180357103728546568473012
DLS 4: 012345678784602531346851720271436085857014263538267104625180347103728456460573812
DLS 5: 012345678785602431346851720271536084857014263438267105624180357103728546560473812
DLS 6: 012345678684702531346851720271436805857014263530267184725180346103628457468573012
DLS 7: 012345678685702431346851720271536804857014263430267185724180356103628547568473012
DLS 8: 012345678684702531346851720271436085857014263538267104725180346103628457460573812
DLS 9: 012345678685702431346851720271536084857014263438267105724180356103628547560473812
DLS 10: 012345678423570816857014263508623147346851720671408352130762485265187034784236501
Adjacency matrix:
0111111110
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
0111111110
Different CFs set within combinatorial structure:
CF 1: 012345678123570846857014263508623417346851720674108352430762185265487031781236504
CF 2: 012345678120478356531786204207651843754830162368014725846127530673502481485263017
CF 3: 012345678123687450605428137564712083241830765387064521736501842870256314458173206
CF 4: 012345678120478356531786240247651803754830162368014725806127534673502481485263017
CF 5: 012345678123786045687210534364852710548163207875024163251407386430671852706538421
CF 6: 012345678120487356536871240248156703854730162367014825701628534673502481485263017
CF 7: 012345678123678045654821307387510264705462183468237510231704856870156432546083721
CF 8: 012345678124037856487251063530682147768514302653708421876423510241860735305176284
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 8, 8]
Multiset of vertices powers:
{2:8, 8:2}
149. Structure 10N16M10C
DLSs within combinatorial structure:
DLS 1: 012345678123486507784510362578604231635872410407153826846027153350261784261738045
DLS 2: 012345678730261854648102735485713062857026143571634280364870521206458317123587406
DLS 3: 012345678731260854648102735485713062857026143570634281364871520206458317123587406
DLS 4: 012345678123486507704518362578604231365872410487153026846027153650231784231760845
DLS 5: 012345678123486507704518362578604231635872410487153026846027153350261784261730845
DLS 6: 012345678123486507784510362578604231365872410407153826846027153650231784231768045
DLS 7: 012345678423586107705418362278601534361874250187253046856027413640132785534760821
DLS 8: 012345678423586107705418362278601534631874250187253046856027413340162785564730821
DLS 9: 012345678423586107785410362278601534361874250107253846856027413640132785534768021
DLS 10: 012345678423586107785410362278601534631874250107253846856027413340162785564738021
Adjacency matrix:
0110000000
1001111111
1001111111
0110000000
0110000000
0110000000
0110000000
0110000000
0110000000
0110000000
Different CFs set within combinatorial structure:
CF 1: 012345678123486507784510362578604231635872410407153826846027153350261784261738045
CF 2: 012345678120568743538726104853417026764150832647231580276084351401873265385602417
CF 3: 012345678120568743538726104853417026764150832647231580476082351201873465385604217
CF 4: 012345678123486507704518362578604231365872410487153026846027153650231784231760845
CF 5: 012345678123486507704518362578604231635872410487153026846027153350261784261730845
CF 6: 012345678123486507784510362578604231365872410407153826846027153650231784231768045
CF 7: 012345678143576802386427510675203481508714263730658124267180345824031756451862037
CF 8: 012345678143576802386427510675203481508714236730658124267180345824061753451832067
CF 9: 012345678143576802386027514675203481508714263734658120267180345820431756451862037
CF 10: 012345678143576802386027514675203481508714236734658120267180345820461753451832067
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 8, 8]
Multiset of vertices powers:
{2:8, 8:2}
150. Structure 10N16M10C
DLSs within combinatorial structure:
DLS 1: 012345678120487365431756280863521704546873012785064123604132857257608431378210546
DLS 2: 012345678584620137853267401127436580370518246631782054465801723708154362246073815
DLS 3: 012345678587620134853264701124736580370518246631482057765801423408157362246073815
DLS 4: 012345678854602137283067451107436825378210546631758204460521783725184360546873012
DLS 5: 012345678857602134283064751104736825378210546631458207760521483425187360546873012
DLS 6: 012345678150487362431726580863251704246873015785064123604132857527608431378510246
DLS 7: 012345678420187365134756280863524701546873012785061423601432857257608134378210546
DLS 8: 012345678450187362134726580863254701246873015785061423601432857527608134378510246
DLS 9: 012345678120487365461753280836521704543876012785064123604132857257608431378210546
DLS 10: 012345678420187365164753280836524701543876012785061423601432857257608134378210546
Adjacency matrix:
0111100000
1000011100
1000011100
1000001011
1000001011
0110000000
0111100000
0110000000
0001100000
0001100000
Different CFs set within combinatorial structure:
CF 1: 012345678120487365431756280863521704546873012785064123604132857257608431378210546
CF 2: 012345678123754806461807523785432160346578012250186734804621357537260481678013245
CF 3: 012345678123706854346518207754821360285670143867453021570182436438067512601234785
CF 4: 012345678120486753453721086806154327345670812567238104781562430234807561678013245
CF 5: 012345678120678435543120786465781320281453067837206154754062813306817542678534201
CF 6: 012345678123486705436807152701563284258074361370218546865120437547632810684751023
CF 7: 012345678124768503586420137761854320650237481837601254405183762378512046243076815
CF 8: 012345678126708534854127063630871425583062147701453286345286710478610352267534801
CF 9: 012345678120487365461753280836521704543876012785064123604132857257608431378210546
CF 10: 012345678124768503586402137761854320650237481837621054405183762378510246243076815
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{2:4, 4:6}
151. Structure 10N16M10C
DLSs within combinatorial structure:
DLS 1: 012345678123670854387451062871502346268734105430186527506827413645213780754068231
DLS 2: 012345678438156702754068321367284510640813257501627483125470836873502164286731045
DLS 3: 012345678438156702654078321367284510740813256501627483125460837873502164286731045
DLS 4: 012345678123470856387651042871502364268734105430186527506827413645213780754068231
DLS 5: 012345678123470856386751402871502364208637145637184520540826713465213087754068231
DLS 6: 012345678123470856387621045871502364568734102430186527206857413645213780754068231
DLS 7: 012345678123670854387421065871502346568734102430186527206857413645213780754068231
DLS 8: 012345678123470856386721405871502364508637142637184520240856713465213087754068231
DLS 9: 012345678438156702654078321367284510740513286801627453125460837573802164286731045
DLS 10: 012345678438156702754068321367284510640513287801627453125470836573802164286731045
Adjacency matrix:
0110000000
1001111100
1001111100
0110000000
0110000011
0110000000
0110000000
0110000011
0000100100
0000100100
Different CFs set within combinatorial structure:
CF 1: 012345678123670854387451062871502346268734105430186527506827413645213780754068231
CF 2: 012345678123458067857610243601587432785234106234106785460723851346872510578061324
CF 3: 012345678123458067857610243681507432705234186234186705460723851346872510578061324
CF 4: 012345678123470856387651042871502364268734105430186527506827413645213780754068231
CF 5: 012345678123470856386751402871502364208637145637184520540826713465213087754068231
CF 6: 012345678120678534648517203856731420387256041273084165504162387465803712731420856
CF 7: 012345678120678534648517203456731820387256041273084165504162387865403712731820456
CF 8: 012345678123470856386721405871502364508637142637184520240856713465213087754068231
CF 9: 012345678123586740604237185781603524370854216458071362547162803865720431236418057
CF 10: 012345678123076845567834120681453207835760412306281754470128536254607381748512063
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 6, 6]
Multiset of vertices powers:
{2:6, 4:2, 6:2}
152. Structure 10N18M5C
DLSs within combinatorial structure:
DLS 1: 012345678230167845764802153487630521178254306645781032856473210523016784301528467
DLS 2: 012345678846523710103287465564812307350678241721036584485760123237104856678451032
DLS 3: 012345678485623710103267584846512307350876241721034856564780123237108465678451032
DLS 4: 012345678846510723321087465564803217253678140730126584485762301107234856678451032
DLS 5: 012345678485610723321067584846503217253876140730124856564782301107238465678451032
DLS 6: 012345678764832105487620351230187546671054823305218467856473210548761032123506784
DLS 7: 012345678734162805467820153280637541178054326605281437856473210543716082321508764
DLS 8: 012345678260837145784602351437180526671254803345718062856473210528061734103526487
DLS 9: 012345678271086435403528716534870162847263501368451027685137240720614853156702384
DLS 10: 012345678870526413185274306503412867241763580364058721627830145758601234436187052
Adjacency matrix:
0111100000
1000011100
1000011100
1000011100
1000011110
0111100000
0111100001
0111100000
0000100000
0000001000
Different CFs set within combinatorial structure:
CF 1: 012345678230167845764802153487630521178254306645781032856473210523016784301528467
CF 2: 012345678230167845764802153487630521821754306305218467153026784576483210648571032
CF 3: 012345678230167845487620351764812503378054126645781032856473210501238467123506784
CF 4: 012345678230167845487620351764812503803754126125036784351208467576483210648571032
CF 5: 012345678123508764634872501348721056581637240705216483250164837876450312467083125
Ascending sorted vector of vertices powers:
[1, 1, 4, 4, 4, 4, 4, 4, 5, 5]
Multiset of vertices powers:
{1:2, 4:6, 5:2}
153. Structure 10N18M5C
DLSs within combinatorial structure:
DLS 1: 012345678230478165681534702853761240564123087728056431405617823147802356376280514
DLS 2: 012345678374180526728056431546213087853762140681534702267801354405627813130478265
DLS 3: 012345678376180524728056431564213087853762140681534702247801356405627813130478265
DLS 4: 012345678374280516728056431546123087853761240681534702167802354405617823230478165
DLS 5: 012345678376280514728056431564123087853761240681534702147802356405617823230478165
DLS 6: 012345678376280541728056134561423087853764210684531702147802356405617823230178465
DLS 7: 012345678230478165681534702853761240574123086728056431405617823146802357367280514
DLS 8: 012345678260478135381564702856731240534126087728053461405617823147802356673280514
DLS 9: 012345678730428165681534207853261740564173082278056431405617823147802356326780514
DLS 10: 012345678760428135381564207856231740534176082278053461405617823147802356623780514
Adjacency matrix:
0111110000
1000001000
1000001100
1000001010
1000001111
1000001111
0111110000
0010110000
0001110000
0000110000
Different CFs set within combinatorial structure:
CF 1: 012345678230478165681534702853761240564123087728056431405617823147802356376280514
CF 2: 012345678230786145647518320584167203863450712451032867706823451325671084178204536
CF 3: 012345678230786541647158320184567203863410752451032867706823415325671084578204136
CF 4: 012345678230758461847136520184567203506814732651072384763420815325681047478203156
CF 5: 012345678230478165681534702853761240574123086728056431405617823146802357367280514
Ascending sorted vector of vertices powers:
[2, 2, 3, 3, 3, 3, 5, 5, 5, 5]
Multiset of vertices powers:
{2:2, 3:4, 5:4}
154. Structure 10N18M6C
DLSs within combinatorial structure:
DLS 1: 012345678124567830851073462236481507483752016708216345560834721375620184647108253
DLS 2: 012345678375681204148702356584176023637820541260453187801567432453218760726034815
DLS 3: 012345678375682104248701356584176023637820541160453287801567432453218760726034815
DLS 4: 012345678375681204148702356584176023637820541260453187821567430453018762706234815
DLS 5: 012345678375682104248701356584176023637820541160453287821567430453018762706234815
DLS 6: 012345678643281507168502743785124036576830421320657184831476250457018362204763815
DLS 7: 012345678124067835801573462236481507483752016758216340560834721375620184647108253
DLS 8: 012345678453168720784630512675204831528017463831726054146872305207453186360581247
DLS 9: 012345678453168720784630512675204831528017463831726054246871305107453286360582147
DLS 10: 012345678847631205125804736253186047684720351360457182471563820738012564506278413
Adjacency matrix:
0111110000
1000001110
1000001110
1000001110
1000001110
1000000000
0111100000
0111100001
0111100000
0000000100
Different CFs set within combinatorial structure:
CF 1: 012345678124567830851073462236481507483752016708216345560834721375620184647108253
CF 2: 012345678123684507374061285451803762560472831738156024285730146846217350607528413
CF 3: 012345678123684507374061285451803762560472831837156024285730146746218350608527413
CF 4: 012345678123684705354061287471803562560472831738156024285730146846217350607528413
CF 5: 012345678123067845756281034581436720370852416864173502407628153635704281248510367
CF 6: 012345678124067835801573462236481507483752016758216340560834721375620184647108253
Ascending sorted vector of vertices powers:
[1, 1, 4, 4, 4, 4, 4, 4, 5, 5]
Multiset of vertices powers:
{1:2, 4:6, 5:2}
155. Structure 10N18M7C
DLSs within combinatorial structure:
DLS 1: 012345678230167845754208163563812704108754326427036581846571230675483012381620457
DLS 2: 012345678583016427105862734427650381271438560340127856764283105856701243638574012
DLS 3: 012345678761458032483726501304562817538270146657081423876134250240613785125807364
DLS 4: 012345678758461032463728105304812567635270841187056423876134250240583716521607384
DLS 5: 012345678761258304384706521240563817538072146657481032876134250423610785105827463
DLS 6: 012345678758261304364708125240813567635072841187456032876134250423580716501627483
DLS 7: 012345678543017826105682437826750341271436580360128754487263105754801263638574012
DLS 8: 012345678243107856521680437856721340170436285365218704487063521704852163638574012
DLS 9: 012345678283106457521860734457621380170438265345217806764083521806752143638574012
DLS 10: 012345678450782163836471250201854736345617802687023541763208415178536024524160387
Adjacency matrix:
0100000000
1011110000
0100001110
0100001110
0100001110
0100001110
0011110000
0011110001
0011110000
0000000100
Different CFs set within combinatorial structure:
CF 1: 012345678230167845754208163563812704108754326427036581846571230675483012381620457
CF 2: 012345678123876405584203761658721043867430512701658324435062187346187250270514836
CF 3: 012345678126458730574206183637814025801673542753081264485762301368120457240537816
CF 4: 012345678124658703573260184407816325861073542756481230385702461638124057240537816
CF 5: 012345678230178564154602387528730146306854712873216450461027835647581023785463201
CF 6: 012345678230187546157802364524630187306754812643218750871026435468571023785463201
CF 7: 012345678123486705807651324468137052230568417756204831381072546645723180574810263
Ascending sorted vector of vertices powers:
[1, 1, 4, 4, 4, 4, 4, 4, 5, 5]
Multiset of vertices powers:
{1:2, 4:6, 5:2}
156. Structure 10N18M7C
DLSs within combinatorial structure:
DLS 1: 012345678123876405465023187846107253687432510701658324534280761358761042270514836
DLS 2: 012345678687253041856734210371586402248610735164027853405162387530478126723801564
DLS 3: 012345678487250361856734210671583042248016735130427856365102487503678124724861503
DLS 4: 012345678678523041856734210321856407745610832164072583407168325230487156583201764
DLS 5: 012345678478520361856734210621853047745016832130472586367108425203687154584261703
DLS 6: 012345678843176205165083427486207153627438510708651342531820764354762081270514836
DLS 7: 012345678123867450407623185845170263586432017651708324734286501368051742270514836
DLS 8: 012345678843167250107683425485270163526438017658701342731826504364052781270514836
DLS 9: 012345678856012734471826503738260451623578140587134062104687325365401287240753816
DLS 10: 012345678561832407183560724846721530370654281407218365724086153235107846658473012
Adjacency matrix:
0111100000
1000011100
1000011111
1000011100
1000011100
0111100000
0111100000
0111100000
0010000000
0010000000
Different CFs set within combinatorial structure:
CF 1: 012345678123876405465023187846107253687432510701658324534280761358761042270514836
CF 2: 012345678123768405804517326637184052358671240470256831781032564265403187546820713
CF 3: 012345678230186745165402387628730154307568412873214560541027836456871023784653201
CF 4: 012345678124658703375082461407816325681273540738164052563720184856401237240537816
CF 5: 012345678230176854167802345625430187308567412453218760871024536546781023784653201
CF 6: 012345678123458706607581324468137052830762415756204831381026547245673180574810263
CF 7: 012345678123608754684752013847523160538067421756481302301276845475810236260134587
Ascending sorted vector of vertices powers:
[1, 1, 4, 4, 4, 4, 4, 4, 4, 6]
Multiset of vertices powers:
{1:2, 4:7, 6:1}
157. Structure 10N18M10C
DLSs within combinatorial structure:
DLS 1: 012345678123678045608451327431782560367514802285063714756230481874106253540827136
DLS 2: 012345678745862310157634082823106754608453127361728405584071236430287561276510843
DLS 3: 012345678173620845608452317431287560367514082785063124256738401824106753540871236
DLS 4: 012345678123670845608451327431782560367514082285063714756238401874106253540827136
DLS 5: 012345678173620845608451327431287560367514082785063214256738401824106753540872136
DLS 6: 012345678173628045608452317431287560367514802785063124256730481824106753540871236
DLS 7: 012345678173628045608451327431287560367514802785063214256730481824106753540872136
DLS 8: 012345678647852310175634082823106754508473126361528407784061235430287561256710843
DLS 9: 012345678645872310157634082823106754708453126361728405584061237430287561276510843
DLS 10: 012345678547862310175634082823106754608473125361528407784051236430287561256710843
Adjacency matrix:
0100000000
1011111000
0100000111
0100000000
0100000111
0100000111
0100000111
0010111000
0010111000
0010111000
Different CFs set within combinatorial structure:
CF 1: 012345678123678045608451327431782560367514802285063714756230481874106253540827136
CF 2: 012345678123678504458120736504781362287564013761203845635817420846032157370456281
CF 3: 012345678123567840546708312760831524374150286835274061257486103408612735681023457
CF 4: 012345678123657840647508312560831724354160287836274051275486103408712536781023465
CF 5: 012345678123657840645708312760831524374160285836274051257486103408512736581023467
CF 6: 012345678123687450748062315687450123365718042501236784236874501874501236450123867
CF 7: 012345678123687450748062315687450123365718042504236781236871504871504236450123867
CF 8: 012345678123678504458130726504783261286514037731206845365827410847061352670452183
CF 9: 012345678123678504458130726504783162286514037731206845365827410847062351670451283
CF 10: 012345678123678504458120736504781362287564013671203845735816420846032157360457281
Ascending sorted vector of vertices powers:
[1, 1, 4, 4, 4, 4, 4, 4, 4, 6]
Multiset of vertices powers:
{1:2, 4:7, 6:1}
158. Structure 10N19M3C
DLSs within combinatorial structure:
DLS 1: 012345678123487560754860312536102487260751843647038251381624705875216034408573126
DLS 2: 012345678856204713631428057245713860487160532308572146574086321120637485763851204
DLS 3: 012345678256804713631428057845713260487160532308572146574086321120637485763251804
DLS 4: 012345678738156042146037285670281534824573106583614720465702813201468357357820461
DLS 5: 012345678647218305375681420401836752536427081260753814823570146758104263184062537
DLS 6: 012345678584073126807214563263457801178632450435126087750861234346580712621708345
DLS 7: 012345678460732851528106734387520146743018265851467302106253487634871520275684013
DLS 8: 012345678276804513631428057847513260485160732308752146754086321120637485563271804
DLS 9: 012345678584073126407218563263457801178632450835126047750861234346580712621704385
DLS 10: 012345678584073126807264513263457801678132450435621087750816234341580762126708345
Adjacency matrix:
0111111000
1000000000
1001111000
1010111100
1011011010
1011101000
1011110001
0001000000
0000100000
0000001000
Different CFs set within combinatorial structure:
CF 1: 012345678123487560754860312536102487260751843647038251381624705875216034408573126
CF 2: 012345678123768045385470261257683104468217530836504712740851326571026483604132857
CF 3: 012345678124687350806571243731456082487013526653728401560832714245160837378204165
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 5, 5, 6, 6, 6, 6]
Multiset of vertices powers:
{1:4, 5:2, 6:4}
159. Structure 10N19M5C
DLSs within combinatorial structure:
DLS 1: 012345678123768405408512367687451023230876514865203741756034182341687250574120836
DLS 2: 012345678384201567125673084568734102473012856741586320607458231836120745250867413
DLS 3: 012345678384201567125673084563784102478012356741536820607458231836120745250867413
DLS 4: 012345678384021567125673084568734102473210856741586320607458231836102745250867413
DLS 5: 012345678384021567125673084563784102478210356741536820607458231836102745250867413
DLS 6: 012345678123786405408512367687451023230678514865203741756034182341867250574120836
DLS 7: 012345678123786405408512367687401523235678014860253741756034182341867250574120836
DLS 8: 012345678123768405408512367687401523235876014860253741756034182341687250574120836
DLS 9: 012345678123780456456812307807461523235076814568203741780534162341657280674128035
DLS 10: 012345678234801567185670234563724180470218356741586023627453801806132745358067412
Adjacency matrix:
0111100000
1000011100
1000011100
1000011100
1000011110
0111100000
0111100000
0111100001
0000100001
0000000110
Different CFs set within combinatorial structure:
CF 1: 012345678123768405408512367687451023230876514865203741756034182341687250574120836
CF 2: 012345678123584706804756231786103452248670315530468127361027584457231860675812043
CF 3: 012345678123708564258461037867154320346870215405236781781523406634087152570612843
CF 4: 012345678123768405408512367687401523235876014860253741756034182341687250574120836
CF 5: 012345678123078546451806732238751064570462813867234150745680321604513287386127405
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 5, 5]
Multiset of vertices powers:
{2:2, 4:6, 5:2}
160. Structure 10N19M8C
DLSs within combinatorial structure:
DLS 1: 012345678120467835235708416783620541357814260604283157846051723471536082568172304
DLS 2: 012345678684230517163572084475106832846051723528467301357814260730628145201783456
DLS 3: 012345678681230547463572081175406832846051723528167304357814260730628415204783156
DLS 4: 012345678120567834234708516783620451357814260605283147846051723571436082468172305
DLS 5: 012345678126507834234768510783624051357810246405283167860451723571036482648172305
DLS 6: 012345678120568734234807516753620481385714260607283145546071823871436052468152307
DLS 7: 012345678126508734234867510753624081385710246407283165560471823871036452648152307
DLS 8: 012345678864230517183572064475806132641058723528417306357164280730621845206783451
DLS 9: 012345678864270513187532064375806142631058427528714306453167280740621835206483751
DLS 10: 012345678684270513167532084375106842836051427528764301453817260740628135201483756
Adjacency matrix:
0110000000
1001111000
1001000000
0110000111
0100000111
0100000111
0100000111
0001111000
0001111000
0001111000
Different CFs set within combinatorial structure:
CF 1: 012345678120467835235708416783620541357814260604283157846051723471536082568172304
CF 2: 012345678120486753508762314834670125756014832675203481247138506361857240483521067
CF 3: 012345678120476853508762314734680125856014732675203481247138506361857240483521067
CF 4: 012345678120567834234708516783620451357814260605283147846051723571436082468172305
CF 5: 012345678120568734234807516753620481385714260607283145546071823871436052468152307
CF 6: 012345678123586407874602153356824710708153246581267034267410385435071862640738521
CF 7: 012345678120687435408263517647502381376410852853076124234851706561738240785124063
CF 8: 012345678120487563576204381743852016384610725658723140865071432207136854431568207
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 5, 5]
Multiset of vertices powers:
{2:2, 4:6, 5:2}
161. Structure 10N20M10C
DLSs within combinatorial structure:
DLS 1: 012345678120456837534687102341820756265178340687203415806714523758031264473562081
DLS 2: 012345678271568043768120354134687502503714826456032781385201467827456130640873215
DLS 3: 012345678271568043768120354134657802803714526456032781385201467527486130640873215
DLS 4: 012345678271538046768120354134687502506714823453062781385201467827456130640873215
DLS 5: 012345678271538046768120354134657802806714523453062781385201467527486130640873215
DLS 6: 012345678125406837534687102341820756260178345687253410806714523758031264473562081
DLS 7: 012345678125406837534687102241830756360178245687253410806714523758021364473562081
DLS 8: 012345678120456837534687102241830756365178240687203415806714523758021364473562081
DLS 9: 012345678625084137136457082250836741384571206867213450401768523748620315573102864
DLS 10: 012345678625084137136457082350826741284571306867213450401768523748630215573102864
Adjacency matrix:
0111100000
1000011100
1000011100
1000011111
1000011111
0111100000
0111100000
0111100000
0001100000
0001100000
Different CFs set within combinatorial structure:
CF 1: 012345678120456837534687102341820756265178340687203415806714523758031264473562081
CF 2: 012345678231578064467012583145860327506723841623184705784256130870631452358407216
CF 3: 012345678231758064145806237807613452584270316623184705760521843358467120476032581
CF 4: 012345678231578064467032581145860327506721843623184705784256130870613452358407216
CF 5: 012345678231758064145860237807613452584276310623184705760521843358407126476032581
CF 6: 012345678123056847847130265471863052536412780285674103360781524658207431704528316
CF 7: 012345678123067854738652041386714520651430287845126703507281436460578312274803165
CF 8: 012345678120456837534687102241830756365178240687203415806714523758021364473562081
CF 9: 012345678120468357768231045684573120473012586801657234537186402345720861256804713
CF 10: 012345678120468357768231045684573120473812506801657234537106482345720861256084713
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{2:2, 4:6, 6:2}
162. Structure 10N21M3C
DLSs within combinatorial structure:
DLS 1: 012345678143728506627850314584607132208514763765283041836471250350162487471036825
DLS 2: 012345678254817063743562180861254307630178542187036425475620831528403716306781254
DLS 3: 012345678327406815458037261276180453864753120501624387183562704645871032730218546
DLS 4: 012345678580674321865213407753461280471832056236507814327086145104728563648150732
DLS 5: 012345678738260154506184732425873061387026415873451206640718523261537840154602387
DLS 6: 012345678876153240284671053608532714125460837340718562751204386437086125563827401
DLS 7: 012345678738206154506184732425873061387620415873451206640718523261537840154062387
DLS 8: 012345678876153240284671053608512734325460817140738562751204386437086125563827401
DLS 9: 012345678254187063743562180861254307630871542187036425475620831528403716306718254
DLS 10: 012345678327406815458037261876120453264753180501684327183562704645871032730218546
Adjacency matrix:
0111110000
1011111000
1101110100
1110110000
1111010010
1111100001
0100000010
0010000001
0000101000
0000010100
Different CFs set within combinatorial structure:
CF 1: 012345678143728506627850314584607132208514763765283041836471250350162487471036825
CF 2: 012345678123408765854726310701654832568013427436587201380172546675231084247860153
CF 3: 012345678123608745856724310701456832568013427634587201380172564475231086247860153
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 5, 5, 6, 6, 6, 6]
Multiset of vertices powers:
{2:4, 5:2, 6:4}
163. Structure 10N21M5C
DLSs within combinatorial structure:
DLS 1: 012345678123687450365824017604752183571460832740138526287516304836201745458073261
DLS 2: 012345678438701265604257183165874032856023741287516304740138526573682410321460857
DLS 3: 012345678438201765604752183165824037856073241287516304740138526523687410371460852
DLS 4: 012345678438501762604752183165824037826073541587216304740138256253687410371460825
DLS 5: 012345678478501362604752183165824037826037541583216704340178256257683410731460825
DLS 6: 012345678478201365604752183165824037856037241283516704340178526527683410731460852
DLS 7: 012345678123687450365824017804752163571460832740138526287516304638201745456073281
DLS 8: 012345678326187450165824037604752183573410862740638521287561304831206745458073216
DLS 9: 012345678321687450165824037604752183573460812740138526287516304836201745458073261
DLS 10: 012345678321687450165824037804752163573460812740138526287516304638201745456073281
Adjacency matrix:
0111110000
1000001111
1000001111
1000001111
1000000110
1000000110
0111000000
0111110000
0111110000
0111000000
Different CFs set within combinatorial structure:
CF 1: 012345678123687450365824017604752183571460832740138526287516304836201745458073261
CF 2: 012345678127583046341806752673451820704268513458037261865124307530672184286710435
CF 3: 012345678234706815608273451451687032576024183827561304740138526163852740385410267
CF 4: 012345678123058764786134052674581320831476205457203816265810437540762183308627541
CF 5: 012345678146708235573864102284137560768250413351682047830426751625071384407513826
Ascending sorted vector of vertices powers:
[3, 3, 3, 3, 5, 5, 5, 5, 5, 5]
Multiset of vertices powers:
{3:4, 5:6}
164. Structure 10N21M10C
DLSs within combinatorial structure:
DLS 1: 012345678127583046341856720673401852704268513458037261865124307530672184286710435
DLS 2: 012345678576832410428017563807564231183426705641703852730658124265180347354271086
DLS 3: 012345678576432810428017563807564231143826705681703452730658124265180347354271086
DLS 4: 012345678576832410408217563827564031183426705641703852730658124265180347354071286
DLS 5: 012345678576432810408217563827564031143826705681703452730658124265180347354071286
DLS 6: 012345678576438210408217563827564031143826705681703452730652184265180347354071826
DLS 7: 012345678627583041346851720173406852704218563458037216865124307530672184281760435
DLS 8: 012345678827563041346851720173406852704218563458037216685124307530672184261780435
DLS 9: 012345678621583047346851720173406852704218563458037216865724301530672184287160435
DLS 10: 012345678821563047346851720173406852704218563458037216685724301530672184267180435
Adjacency matrix:
0111110000
1000001100
1000001100
1000001111
1000001111
1000001111
0111110000
0111110000
0001110000
0001110000
Different CFs set within combinatorial structure:
CF 1: 012345678127583046341856720673401852704268513458037261865124307530672184286710435
CF 2: 012345678123058764786134025674581302831476250457203816265810437540762183308627541
CF 3: 012345678143728506687150423530862741406537812275681034861403257358274160724016385
CF 4: 012345678123687450365824017604752183571460832740138526287516304836071245458203761
CF 5: 012345678230487561651802437425761083187054326348216750573620814806173245764538102
CF 6: 012345678127583046341806752670451823703268514458037261865124307534672180286710435
CF 7: 012345678230517864384076251476803512167258043825461307541632780603784125758120436
CF 8: 012345678123687450365824017604752183571260834740138526287416305836501742458073261
CF 9: 012345678146708235325680417784236150650472381837521046571063824403817562268154703
CF 10: 012345678123058764786134052678521340831476205457203816265810437540762183304687521
Ascending sorted vector of vertices powers:
[3, 3, 3, 3, 5, 5, 5, 5, 5, 5]
Multiset of vertices powers:
{3:4, 5:6}
165. Structure 10N24M10C
DLSs within combinatorial structure:
DLS 1: 012345678123076845476581230384720516507634182240158763635812407861207354758463021
DLS 2: 012345678438720516851207463746812035160453827524076381203168754375681240687534102
DLS 3: 012345678348720516851207364736812045160453827523076481204168753475681230687534102
DLS 4: 012345678438720516851207463146872035760453821524016387203168754375681240687534102
DLS 5: 012345678348720516851207364136872045760453821523016487204168753475681230687534102
DLS 6: 012345678123076845675481230384760512207534186460128753536812407851207364748653021
DLS 7: 012345678123076845475681230384760512207534186640128753536812407851207364768453021
DLS 8: 012345678123076854574681230385760412207534186650128743436812507841207365768453021
DLS 9: 012345678123076854574681230385720416607534182250168743436812507841207365768453021
DLS 10: 012345678123076845475681230384720516607534182240168753536812407851207364768453021
Adjacency matrix:
0111100000
1000011111
1000011111
1000011111
1000011111
0111100000
0111100000
0111100000
0111100000
0111100000
Different CFs set within combinatorial structure:
CF 1: 012345678123076845476581230384720516507634182240158763635812407861207354758463021
CF 2: 012345678123076854378452106267584310504761283485213067640138725831607542756820431
CF 3: 012345678123608754504186237375861042287534106658027413436712580841270365760453821
CF 4: 012345678123076854578432106267584310304761285485213067640158723831607542756820431
CF 5: 012345678123608745405186237374861052287534106648027513536712480851270364760453821
CF 6: 012345678123076845675481230384760512207534186460128753536812407851207364748653021
CF 7: 012345678123076845475681230384760512207534186640128753536812407851207364768453021
CF 8: 012345678123076854534867201486750123208431765375618042861204537647582310750123486
CF 9: 012345678123076854534807261486750123268431705375618042801264537647582310750123486
CF 10: 012345678123076845475681230384720516607534182240168753536812407851207364768453021
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{4:6, 6:4}
166. Structure 10N25M4C
DLSs within combinatorial structure:
DLS 1: 012345678123486750504861237465720183276534801357618042831072564648207315780153426
DLS 2: 012345678841207563156720384530861247708453126683072415324618750475186032267534801
DLS 3: 012345678841207563156720384530871246608453127783062415324618750475186032267534801
DLS 4: 012345678831207564156720483540861237708453126684072315423618750375186042267534801
DLS 5: 012345678831207564156720483540871236608453127784062315423618750375186042267534801
DLS 6: 012345678871203564156720483540861237308457126684032715427618350735186042263574801
DLS 7: 012345678423186750504861237165720483276534801357618042831072564648207315780453126
DLS 8: 012345678523186740405861237164720583276534801347618052831072465658207314780453126
DLS 9: 012345678423186750504861237265710483176534802357628041831072564648207315780453126
DLS 10: 012345678523186740405861237264710583176534802347628051831072465658207314780453126
Adjacency matrix:
0111110000
1000001111
1000001111
1000001111
1000001111
1000001111
0111110000
0111110000
0111110000
0111110000
Different CFs set within combinatorial structure:
CF 1: 012345678123486750504861237465720183276534801357618042831072564648207315780153426
CF 2: 012345678230768514351287460546872301168453027724016835483120756875601243607534182
CF 3: 012345678230768514351287460546812307768453021124076835483120756875601243607534182
CF 4: 012345678234670815628534701187453062351067284763281450470812536845706123506128347
Ascending sorted vector of vertices powers:
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
Multiset of vertices powers:
{5:10}
167. Structure 10N25M5C
DLSs within combinatorial structure:
DLS 1: 012345678123486750704861235375610842267534081456728103831072564548207316680153427
DLS 2: 012345678831204567356720481640872315708453126587061234423618750275186043164537802
DLS 3: 012345678831207564356720481740862315608453127584071236423618750275186043167534802
DLS 4: 012345678831207564356720481640872315708453126584061237423618750275186043167534802
DLS 5: 012345678841207563456720381730862415608453127583071246324618750275186034167534802
DLS 6: 012345678841207563456720381630872415708453126583061247324618750275186034167534802
DLS 7: 012345678423186750704861235375610842267534081156728403831072564548207316680453127
DLS 8: 012345678523186740705861234374610852267534081146728503831072465458207316680453127
DLS 9: 012345678423186750704861235375620841167534082256718403831072564548207316680453127
DLS 10: 012345678523186740705861234374620851167534082246718503831072465458207316680453127
Adjacency matrix:
0111110000
1000001111
1000001111
1000001111
1000001111
1000001111
0111110000
0111110000
0111110000
0111110000
Different CFs set within combinatorial structure:
CF 1: 012345678123486750704861235375610842267534081456728103831072564548207316680153427
CF 2: 012345678123706854658423701437581062284067135761234580570812346845670213306158427
CF 3: 012345678123706854658423701487531062234067185761284530570812346845670213306158427
CF 4: 012345678123076854378452106867504312504761283485213067640138725231687540756820431
CF 5: 012345678123076854578432106867504312304761285485213067640158723231687540756820431
Ascending sorted vector of vertices powers:
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
Multiset of vertices powers:
{5:10}
168. Structure 11N10M9C
DLSs within combinatorial structure:
DLS 1: 012345678123506847346812750458173206730258461584637012871460325605724183267081534
DLS 2: 012345678785063412837521064240687531521436780176204853364852107458170326603718245
DLS 3: 012345678785013462837526014240687531526431780671204853364852107458170326103768245
DLS 4: 012345678785263410837501264240687531501436782176024853364852107458170326623718045
DLS 5: 012345678785213460837506214240687531506431782671024853364852107458170326123768045
...
DLS 7: 012345678158604723326178540461720385280513467537482106743061852874256031605837214
DLS 8: 012345678785213460534806217270654831806431752641027583367582104458170326123768045
DLS 9: 012345678785213460834506217270684531506431782641027853367852104458170326123768045
DLS 10: 012345678785213460537806214240657831806431752671024583364582107458170326123768045
DLS 11: 012345678280153467837402156105687234761230845658014723374826501426578310543761082
Adjacency matrix:
01111000000
10000000000
10000000000
10000000000
10000110000
00001000000
00001001111
00000010000
00000010000
00000010000
00000010000
Different CFs set within combinatorial structure:
CF 1: 012345678123506847346812750458173206730258461584637012871460325605724183267081534
CF 2: 012345678124058763387406215268573041546812307605734182730621854851267430473180526
CF 3: 012345678123587046504678321630752184846210537287036415475123860368401752751864203
CF 4: 012345678124058763386207415478563021547812306605734182730621854851476230263180547
CF 5: 012345678123578046736452180364810527280637415547201863805164732478026351651783204
CF 6: 012345678120476835451730286273854160837061542568127304685203417304682751746518023
CF 7: 012345678124058763306782415685437102547210386478563021750126834831674250263801547
CF 8: 012345678124038765506782413683457102347210586478563021750126834831674250265801347
CF 9: 012345678123487560837560214365824701501738426478106352640253187256071843784612035
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5]
Multiset of vertices powers:
{1:8, 3:1, 4:1, 5:1}
169. Structure 11N10M11C
DLSs within combinatorial structure:
DLS 1: 012345678120487536473528160586172403231760854658034217865203741347651082704816325
DLS 2: 012345678761230845835706214204863751423578160347681502580127436658014327176452083
DLS 3: 012345678126458730483527106750182463231760854678034215867203541345671082504816327
DLS 4: 012345678126487530473528106580172463231760854658034217865203741347651082704816325
DLS 5: 012345678126478530483527106570182463231760854658034217865203741347651082704816325
...
DLS 7: 012345678126578430583427106470182563231760854658034217865203741347651082704816325
DLS 8: 012345678120458736483527160756182403231760854678034215867203541345671082504816327
DLS 9: 012345678120478536483527160576182403231760854658034217865203741347651082704816325
DLS 10: 012345678120587436573428160486172503231760854658034217865203741347651082704816325
DLS 11: 012345678120578436583427160476182503231760854658034217865203741347651082704816325
Adjacency matrix:
01000000000
10111111111
01000000000
01000000000
01000000000
01000000000
01000000000
01000000000
01000000000
01000000000
01000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120487536473528160586172403231760854658034217865203741347651082704816325
CF 2: 012345678123508467684071532760184253547632810358726104831450726405267381276813045
CF 3: 012345678120576834784162053576834201403618527345207186867450312251783460638021745
CF 4: 012345678123574860358726104587602413604138257746081532235460781871253046460817325
CF 5: 012345678120576834784152063675834201403618527346207185857460312261783450538021746
...
CF 7: 012345678120476835784152063675834201403618527356207184847560312261783450538021746
CF 8: 012345678120458736358604127673582041801276354467031582736820415245713860584167203
CF 9: 012345678120478536483527160576182403231760854658034217865203741347651082704816325
CF 10: 012345678120568743358406127574682031801273465467031582745820316236714850683157204
CF 11: 012345678120568734358406127573682041801274365467031582735820416246713850684157203
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10]
Multiset of vertices powers:
{1:10, 10:1}
170. Structure 11N10M11C
DLSs within combinatorial structure:
DLS 1: 012345678126078543834506217745860321571632480360127854287453106453781062608214735
DLS 2: 012345678548263701681057342364521087803176524257608413175834260726410835430782156
DLS 3: 012345678365104827648731052574286130286057314827413506401562783130678245753820461
DLS 4: 012345678431026857865174203157680432724813065586732140203458716340267581678501324
DLS 5: 012345678751086432803417265437620851164578023580162347275834106346251780628703514
...
DLS 7: 012345678584723061647130582308562147825617304156074823763458210271806435430281756
DLS 8: 012345678123068547874603251746810325387256410465781032201534786530127864658472103
DLS 9: 012345678846157320135268704427601583674830251703482165250713846368574012581026437
DLS 10: 012345678827601534465827103731456280356078412608213745270134856143582067584760321
DLS 11: 012345678548621730325874106160732584754063821271508463687210345803456217436187052
Adjacency matrix:
01100000000
10010000000
10001000000
01000100000
00100010000
00010000000
00001001110
00000010001
00000010000
00000010000
00000001000
Different CFs set within combinatorial structure:
CF 1: 012345678126078543834506217745860321571632480360127854287453106453781062608214735
CF 2: 012345678123867450584713026407632581850274163675481302231506847768150234346028715
CF 3: 012345678123487065507263184854602713476138502681574320230751846348016257765820431
CF 4: 012345678123057864568401327684512730236874051370126485845763102701238546457680213
CF 5: 012345678120468753837650241756814320584236017365781402241073586403127865678502134
...
CF 7: 012345678123468750705286431674801325458130267346017582587623104861752043230574816
CF 8: 012345678120568347873450261407623815584176023765081432241837506356214780638702154
CF 9: 012345678234086751865701324571860243627413085403257816186572430340128567758634102
CF 10: 012345678230178564657834201586401723748653012461782350874260135103526487325017846
CF 11: 012345678123478065537826140384167502458630721876504213760251834641082357205713486
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4]
Multiset of vertices powers:
{1:4, 2:6, 4:1}
171. Structure 11N14M11C
DLSs within combinatorial structure:
DLS 1: 012345678120478536634512087286134705758063421465287310301756842873601254547820163
DLS 2: 012345678341756802586420713730812456207634185873501264624078531465187320158263047
DLS 3: 012345678341726805286450713730812456507634182873501264624078531465187320158263047
DLS 4: 012345678720418536634572081286134705158063427465287310301756842873601254547820163
DLS 5: 012345678724018536803571462386420715458163027165287340241756803670832154537604281
...
DLS 7: 012345678720418536834572061286134705158063427465287310301756842673801254547620183
DLS 8: 012345678120478536834512067286134705758063421465287310301756842673801254547620183
DLS 9: 012345678341726805256480713730812456507634182873501264624078531468157320185263047
DLS 10: 012345678341726805256483710730812456507634182873501264624078531468157023185260347
DLS 11: 012345678341726805286453710730812456507634182873501264624078531465187023158260347
Adjacency matrix:
01100000000
10010000000
10011111000
01100000000
00100000111
00100000111
00100000000
00100000000
00001100000
00001100000
00001100000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536634512087286134705758063421465287310301756842873601254547820163
CF 2: 012345678123487065846073512387561420751632804634208157560124783275810346408756231
CF 3: 012345678120478563563827401784130256647051382835206714401762835276583140358614027
CF 4: 012345678120486753357618042804531267735260481486753120573124806648072315261807534
CF 5: 012345678120453867465781302573864021684172530738026145801237456357608214246510783
...
CF 7: 012345678120483756357618042804561237765230481483756120576124803648072315231807564
CF 8: 012345678120478536534612087385164702768053421856207314201736845473581260647820153
CF 9: 012345678123487065846073512387501426701632854634258107560124783275816340458760231
CF 10: 012345678120457863483761025368574210874613502657208431205136784536820147741082356
CF 11: 012345678120457836847603512736820451584162703365271084251084367673518240408736125
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 6]
Multiset of vertices powers:
{1:2, 2:6, 4:2, 6:1}
172. Structure 11N16M11C
DLSs within combinatorial structure:
DLS 1: 012345678120487365348612750654720183276158034867203541501836427735064812483571206
DLS 2: 012345678248156730657480213576831024130764582381572406824017365403628157765203841
DLS 3: 012345678548176230673280415726831054150462783481527306837014562304658127265703841
DLS 4: 012345678120487365348621750654710283276158034867203541501836427735064812483572106
DLS 5: 012345678120487365248631750654710283376158024867203541501826437735064812483572106
...
DLS 7: 012345678538176240674210385726831054850462713381527406147083562403658127265704831
DLS 8: 012345678548176230673210485726831054850462713481527306137084562304658127265703841
DLS 9: 012345678248156730657410283576831024830764512381572406124087365403628157765203841
DLS 10: 012345678248156730756480213567831024130674582381562407824017365403728156675203841
DLS 11: 012345678248156730756410283567831024830674512381562407124087365403728156675203841
Adjacency matrix:
01100000000
10011000000
10011000000
01100111100
01100111111
00011000000
00011000000
00011000000
00011000000
00001000000
00001000000
Different CFs set within combinatorial structure:
CF 1: 012345678120487365348612750654720183276158034867203541501836427735064812483571206
CF 2: 012345678120487563764152380576831024358270416483016752805623147647508231231764805
CF 3: 012345678123086745378620154751462380564873012806531427480217536235704861647158203
CF 4: 012345678120487365348621750654710283276158034867203541501836427735064812483572106
CF 5: 012345678120487365248631750654710283376158024867203541501826437735064812483572106
...
CF 7: 012345678123768540461582037547631802208157463874203156386024715635470281750816324
CF 8: 012345678123568047846170325730812564307451286465037812251786403578624130684203751
CF 9: 012345678123584067851706432634852701207638154465127380780461523376210845548073216
CF 10: 012345678120487563674152380567831024358270416483016752805623147746508231231764805
CF 11: 012345678123874506451682730647531082280167453875203164304726815736058241568410327
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 3, 3, 6, 8]
Multiset of vertices powers:
{1:2, 2:5, 3:2, 6:1, 8:1}
173. Structure 11N17M11C
DLSs within combinatorial structure:
DLS 1: 012345678124086735683751024836124507540672813407538162751263480368407251275810346
DLS 2: 012345678368154207104528736457283160675810342283467051836701524721036485540672813
DLS 3: 012345678368157204107528436754283160675810342283764051836401527421036785540672813
DLS 4: 012345678368154207104568732457283160275810346683427051836701524721036485540672813
DLS 5: 012345678368157204107568432754283160275810346683724051836401527421036785540672813
...
DLS 7: 012345678863107254157823406784250163675018342230764581506431827421586730348672015
DLS 8: 012345678863104257154863702487250163275018346630427581506731824721586430348672015
DLS 9: 012345678863107254157863402784250163275018346630724581506431827421586730348672015
DLS 10: 012345678421086735683754021836421507540672813107538462754263180368107254275810346
DLS 11: 012345678657823140236071584843752016581637402305184267470216835164508723728460351
Adjacency matrix:
01111111100
10000000010
10000000010
10000000011
10000000010
10000000010
10000000010
10000000010
10000000010
01111111100
00010000000
Different CFs set within combinatorial structure:
CF 1: 012345678124086735683751024836124507540672813407538162751263480368407251275810346
CF 2: 012345678123570846278654103685412037734068251861703524540831762457286310306127485
CF 3: 012345678123768045386170254257486130674852301468031527841503762530217486705624813
CF 4: 012345678123578046457286310605412837734860251348051762861703524270634185586127403
CF 5: 012345678123786450546870213237564801801237564465108732750423186378612045684051327
...
CF 7: 012345678120568743456781230865107324674230581738654102241073865307812456583426017
CF 8: 012345678120578346487632015845103762754860231638214507361057824273486150506721483
CF 9: 012345678126457803453781260780164532245078316837506124601823457564230781378612045
CF 10: 012345678123457806486721530750184263645078312807263154531806427264530781378612045
CF 11: 012345678123674850354786102405817326680532417768021534836250741547108263271463085
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 2, 2, 2, 2, 3, 8, 8]
Multiset of vertices powers:
{1:1, 2:7, 3:1, 8:2}
174. Structure 11N18M11C
DLSs within combinatorial structure:
DLS 1: 012345678120487563483761025765104382834652107657218430201836754576023841348570216
DLS 2: 012345678248036751576128430804763215657810324483652107130487562321574086765201843
DLS 3: 012345678841236750576183204423760815657418032108652347384027561230571486765804123
DLS 4: 012345678284036751576208134821763405657421380103654827430187562348570216765812043
DLS 5: 012345678384026751576208134831762405657431280103654827420187563248570316765813042
...
DLS 7: 012345678841236750567183204423670815756418032108752346384027561230561487675804123
DLS 8: 012345678284036751567208134821673405756421380103754826430187562348560217675812043
DLS 9: 012345678384026751567208134831672405756431280103754826420187563248560317675813042
DLS 10: 012345678120487563843761025765104382438652107657218430201836754576023841384570216
DLS 11: 012345678120587463483761025765104382834652107647218530201836754576023841358470216
Adjacency matrix:
01111111100
10000000010
10000000010
10000000010
10000000010
10000000010
10000000010
10000000011
10000000011
01111111100
00000001100
Different CFs set within combinatorial structure:
CF 1: 012345678120487563483761025765104382834652107657218430201836754576023841348570216
CF 2: 012345678123486750861054237437521086608173425754638102570862341245710863386207514
CF 3: 012345678123057864578421306835612740264870153706134285340786512651208437487563021
CF 4: 012345678128407536356071284537864021264718350470653812845120763603582147781236405
CF 5: 012345678123768450758206134680453712835170246364021587406587321547812063271634805
...
CF 7: 012345678123457860578021346835612704264870153706134285340786512651208437487563021
CF 8: 012345678128407536356071284537864021264718350870653412485120763603582147741236805
CF 9: 012345678123758460758206134580463712836170245364021587405687321647812053271534806
CF 10: 012345678120487563576218430348561207834672015765023841483750126657104382201836754
CF 11: 012345678120567843467183250683410527746058132835621704201874365574236081358702416
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 3, 3, 8, 8]
Multiset of vertices powers:
{2:7, 3:2, 8:2}
175. Structure 12N11M10C
DLSs within combinatorial structure:
DLS 1: 012345678124038765657182340781564023863417502308256417240673851475820136536701284
DLS 2: 012345678371856420835204167128473506450768231267581043684027315506132784743610852
DLS 3: 012345678126083745457162380781536024843617502308254167260471853675820431534708216
DLS 4: 012345678126083745457162380781536024843617502304258167260871453675420831538704216
DLS 5: 012345678126083745457162380781536024843617502608254137230471856375820461564708213
...
DLS 8: 012345678273158460385604127638472501450731286827516043164027835506283714741860352
DLS 9: 012345678576283140425061387287136504843620715604758231730812456351407862168574023
DLS 10: 012345678126083745475162380581736024843617502604258137230871456357420861768504213
DLS 11: 012345678126083745475160382581736204843617520604258137230871456357402861768524013
DLS 12: 012345678126083745457160382781536204843617520604258137230871456375402861568724013
Adjacency matrix:
010000000000
101111000000
010000000000
010000000000
010000000000
010000110000
000001001111
000001000000
000000100000
000000100000
000000100000
000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678124038765657182340781564023863417502308256417240673851475820136536701284
CF 2: 012345678120578346564037281635820714473216805248763150706481532857102463381654027
CF 3: 012345678123768045504186732861570324647812503470253186736421850258037461385604217
CF 4: 012345678123768045564180732801576324647812503476253180730421856258037461385604217
CF 5: 012345678123768045864150732501876324647512803476283150730421586258037461385604217
CF 6: 012345678120438756563871204684527130437216085871064523756103842245780361308652417
CF 7: 012345678123768450865134207651407832578210364784623015430586721246071583307852146
CF 8: 012345678124037856785164032561872304673410285458623710837506421240758163306281547
CF 9: 012345678124687350607831245276504183845713062381056427453172806560428731738260514
CF 10: 012345678123780456405163782561874023847612530378256104780421365236507841654038217
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5]
Multiset of vertices powers:
{1:9, 3:1, 5:2}
176. Structure 12N12M6C
DLSs within combinatorial structure:
DLS 1: 012345678120476835784521063635187402578064321846253710201738546357602184463810257
DLS 2: 012345678864052713138670245547206381426531807251487036375824160603718452780163524
DLS 3: 012345678120736845783521064635187402548063721876254310201478536457602183364810257
DLS 4: 012345678120736845783512064635187420548063712876254301201478536457620183364801257
DLS 5: 012345678120476835784512063635187420578064312846253701201738546357620184463801257
...
DLS 8: 012345678120736845783512064638157420845063712576284301201478536457620183364801257
DLS 9: 012345678425031867506178342763810254874653120680724513351402786148267035237586401
DLS 10: 012345678278156430654823701301672845783510264127438056830764512465081327546207183
DLS 11: 012345678278164530645823701301672845783410256127538064830756412564081327456207183
DLS 12: 012345678278156430654283701381672045723510864107438256830764512465801327546027183
Adjacency matrix:
010000000000
101110000000
010000000000
010001100000
010000000000
000100010000
000100011000
000001100000
000000100111
000000001000
000000001000
000000001000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835784521063635187402578064321846253710201738546357602184463810257
CF 2: 012345678120476835784512063546187302835064721678253410201738546357620184463801257
CF 3: 012345678120436857457601283531820746745068132683174520804257361276583014368712405
CF 4: 012345678120436857453671280571820346345768102687104523804253761236587014768012435
CF 5: 012345678120476835784512063635187420578064312846253701201738546357620184463801257
CF 6: 012345678120483756504867231786150423243576810375618042651024387837201564468732105
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4]
Multiset of vertices powers:
{1:6, 2:2, 3:2, 4:2}
177. Structure 12N12M12C
DLSs within combinatorial structure:
DLS 1: 012345678120483567487261035874652103536017482653708241705824316248136750361570824
DLS 2: 012345678348120756653708421705836214261574830487261305820617543534082167176453082
DLS 3: 012345678120487563487261035834652107576013482653708241705824316248136750361570824
DLS 4: 012345678123487560487261035834652107576013482650738241705824316248106753361570824
DLS 5: 012345678120487563487261035834652107576013482653708241765824310248130756301576824
...
DLS 8: 012345678520483167487261035874612503136057482653708241701824356248536710365170824
DLS 9: 012345678523487160487261035834612507176053482650738241701824356248506713365170824
DLS 10: 012345678520487163487261035834612507176053482653708241761824350248530716305176824
DLS 11: 012345678520483167487261035874612503136057482653708241761824350248530716305176824
DLS 12: 012345678348120756653708421405836217261574830784261305820617543537082164176453082
Adjacency matrix:
010000000000
101111111110
010000000000
010000000000
010000000000
010000000001
010000000000
010000000000
010000000000
010000000000
010000000001
000001000010
Different CFs set within combinatorial structure:
CF 1: 012345678120483567487261035874652103536017482653708241705824316248136750361570824
CF 2: 012345678123760854846251307587126043630874521375408162751632480408517236264083715
CF 3: 012345678120478536483527160576182403201763854658034217835206741347651082764810325
CF 4: 012345678120458736358604127673582041201876354467031582836720415745213860584167203
CF 5: 012345678120487563487261035834652107576013482653708241765824310248130756301576824
...
CF 8: 012345678123674805284560137860713452471056283736208514507182346345821760658437021
CF 9: 012345678120576834784162053576834201408613527345207186867450312253781460631028745
CF 10: 012345678120476835784152063675834201408613527356207184847560312263781450531028746
CF 11: 012345678123578460637051284786420153470813526845706312564237801251684037308162745
CF 12: 012345678230476815148562307426780153653028741387651420704213586875134062561807234
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 10]
Multiset of vertices powers:
{1:8, 2:3, 10:1}
178. Structure 12N14M6C
DLSs within combinatorial structure:
DLS 1: 012345678126087543743126085678502314285473106304618752851260437437851260560734821
DLS 2: 012345678453608712608712453524186037760534821136027584345871260871260345287453106
DLS 3: 012345678126087543543126087658702314287453106304618725871560432435871260760234851
DLS 4: 012345678126087534534126087658702413287453106403618725871560342345871260760234851
DLS 5: 012345678126087543543126087658702314287453106304618752871260435435871260760534821
...
DLS 8: 012345678457608312608712453524186037360574821176023584745831260831260745283457106
DLS 9: 012345678543608712608712543425186037760534821136027485354871260871260354287453106
DLS 10: 012345678453608712608712453524186307760534821136027584345871260871263045287450136
DLS 11: 012345678547608312608712543425186037360574821176023485754831260831260754283457106
DLS 12: 012345678543608712608712543425186307760534821136027485354871260871263054287450136
Adjacency matrix:
010000000000
101111100000
010000000000
010000010000
010000001000
010000000100
010000011111
000100100000
000010100000
000001100000
000000100000
000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678126087543743126085678502314285473106304618752851260437437851260560734821
CF 2: 012345678126087534534126087658702413287453106403618752871260345345871260760534821
CF 3: 012345678126087543543126087658702314287453106304618725871560432435871260760234851
CF 4: 012345678126087534534126087658702413287453106403618725871560342345871260760234851
CF 5: 012345678126087543543126087658702314287453106304618752871260435435871260760534821
CF 6: 012345678126087534734126085678502413285473106403618752851260347347851260560734821
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 6, 6]
Multiset of vertices powers:
{1:4, 2:6, 6:2}
179. Structure 12N15M6C
DLSs within combinatorial structure:
DLS 1: 012345678120463857587126043436872501658230714874651320201587436345708162763014285
DLS 2: 012345678258037416634870521705184263187623045521706834870461352463512780346258107
DLS 3: 012345678258037416634870521785104263107623845521786034870461352463512780346258107
DLS 4: 012345678120463857587126043436852701678230514854671320201587436345708162763014285
DLS 5: 012345678320461857587126043436872501658210734874653120203587416145708362761034285
...
DLS 8: 012345678258037416634870521705184263187623045541706832870261354463512780326458107
DLS 9: 012345678258037416634870521785104263107623845541786032870261354463512780326458107
DLS 10: 012345678857031426634780512785204163201673845578126034120468357463517280346852701
DLS 11: 012345678857013426634780512785204163203671845578126034120468357461537280346852701
DLS 12: 012345678128406537857123046463852701570268314634571820201637485346780152785014263
Adjacency matrix:
011000000000
100100000000
100111100000
011000011100
001000000000
001000001000
001000000110
000100000000
000101000000
000100100001
000000100001
000000000110
Different CFs set within combinatorial structure:
CF 1: 012345678120463857587126043436872501658230714874651320201587436345708162763014285
CF 2: 012345678120463857587126043436852701678230514854671320201587436345708162763014285
CF 3: 012345678120468537534817206786120453608572341245683710371056824853704162467231085
CF 4: 012345678120487356837521064654173802378064521465238710201756483546802137783610245
CF 5: 012345678120486537857123046463852701578260314634571820201637485346708152785014263
CF 6: 012345678120567834387621045874136502638054721456278310201783456543802167765410283
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 5, 5]
Multiset of vertices powers:
{1:2, 2:6, 3:2, 5:2}
180. Structure 12N16M4C
DLSs within combinatorial structure:
DLS 1: 012345678123507864567824103685412730278631045436078251804163527350786412741250386
DLS 2: 012345678645078123751286430168507342307862514874123065480731256236450781523614807
DLS 3: 012345678645078123756281430168507342307812564874623015480736251231450786523164807
DLS 4: 012345678645178023756281430168507342307812564874623105480736251231450786523064817
DLS 5: 012345678127503864563824107685412730238671045746038251804167523450786312371250486
...
DLS 8: 012345678127583064563824107685412730230671845746038251804167523458706312371250486
DLS 9: 012345678123587064567824103685412730270631845346078251804163527458706312731250486
DLS 10: 012345678647058123751286430168507342305862714874123065480731256236470581523614807
DLS 11: 012345678647058123756281430168507342305812764874623015480736251231470586523164807
DLS 12: 012345678647158023756281430168507342305812764874623105480736251231470586523064817
Adjacency matrix:
011100000000
100011000000
100011111000
100011000000
011100000000
011100000111
001000000000
001000000000
001000000010
000001000000
000001001000
000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678123507864567824103685412730278631045436078251804163527350786412741250386
CF 2: 012345678123507864567824103685412730278631045346078251804163527450786312731250486
CF 3: 012345678123486750465831027387154206648072315570628134701563482834207561256710843
CF 4: 012345678123486750465831027387154206648072315750628134501763482834207561276510843
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 6, 6]
Multiset of vertices powers:
{1:4, 2:2, 3:4, 6:2}
181. Structure 12N16M6C
DLSs within combinatorial structure:
DLS 1: 012345678120476835357684201684517320573061482246138057735802164801723546468250713
DLS 2: 012345678257638401684523710301782546468217053120476835846150327735061284573804162
DLS 3: 012345678257638401684253710301782546468517023120476835846120357735061284573804162
DLS 4: 012345678257638401684023715301782546468217053125476830846150327730561284573804162
DLS 5: 012345678124073865357604281680517324576831402243168057765482130801726543438250716
...
DLS 8: 012345678124076835357604281680517324573861402246138057735482160801723546468250713
DLS 9: 012345678120476835357604281684517320573861402246138057735082164801723546468250713
DLS 10: 012345678257638401684523710301782546468217053820476135146850327735061284573104862
DLS 11: 012345678257638401684253710301782546468517023820476135146820357735061284573104862
DLS 12: 012345678257638401684023715301782546468217053825476130146850327730561284573104862
Adjacency matrix:
011100000000
100011111000
100000011000
100000011000
010000000000
010000000100
010000000000
011100000000
011100000111
000001001000
000000001000
000000001000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835357684201684517320573061482246138057735802164801723546468250713
CF 2: 012345678120476835357604281684517320573861402246138057735082164801723546468250713
CF 3: 012345678120568743435786120874102536658437201283674015367210854701853462546021387
CF 4: 012345678123480756748062315276531804684173520807256431530824167365718042451607283
CF 5: 012345678120473865357604281684517320576831402243168057765082134801726543438250716
CF 6: 012345678120473865357684201684517320576031482243168057765802134801726543438250716
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 6, 6]
Multiset of vertices powers:
{1:4, 2:2, 3:4, 6:2}
182. Structure 12N17M12C
DLSs within combinatorial structure:
DLS 1: 012345678123486750756120483504861237267534801835217064480753126371608542648072315
DLS 2: 012345678236807514804516237651720483780453126428671350567234801143082765375168042
DLS 3: 012345678246807513803516247651720384780453126328671450567234801134082765475168032
DLS 4: 012345678231807564804561237156720483780453126428176350567234801643082715375618042
DLS 5: 012345678241807563803561247156720384780453126328176450567234801634082715475618032
...
DLS 8: 012345678123486750756120483504861327267534801835217064480752136371608542648073215
DLS 9: 012345678123476850756120483504861237268534701835217064480753126371608542647082315
DLS 10: 012345678123486750756120483504861237267534801385217064430758126871603542648072315
DLS 11: 012345678123476850756120483504861237268534701385217064430758126871603542647082315
DLS 12: 012345678123476850756120483504861327268534701835217064480752136371608542647083215
Adjacency matrix:
011111100000
100000010000
100000000000
100000011111
100000001000
100000001110
100000001000
010100000000
000111100000
000101000000
000101000000
000100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123486750756120483504861237267534801835217064480753126371608542648072315
CF 2: 012345678123578460364701582405817326580634217738026145851260734647182053276453801
CF 3: 012345678123578460364701582405827316580634127738016245851260734647182053276453801
CF 4: 012345678123578460364781502405817326580634217738026145851260734647102853276453081
CF 5: 012345678123578064376852140284107536751630482635284701460723815847016253508461327
...
CF 8: 012345678123458706801623457368701524786534012457286130245017863570862341634170285
CF 9: 012345678123476850756120483504861237268534701835217064480753126371608542647082315
CF 10: 012345678123486750756120483504861237267534801385217064430758126871603542648072315
CF 11: 012345678123476850756120483504861237268534701385217064430758126871603542647082315
CF 12: 012345678123458706801623547368701425786534012547286130254017863470862351635170284
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 6, 6]
Multiset of vertices powers:
{1:2, 2:6, 4:2, 6:2}
183. Structure 12N18M4C
DLSs within combinatorial structure:
DLS 1: 012345678123580764754862103680754321467138250841026537305271846578603412236417085
DLS 2: 012345678857261340168054732734602815325417086276583104583720461401876523640138257
DLS 3: 012345678857261340168054732734682015325417806276503184583720461401876523640138257
DLS 4: 012345678123580764754862103680724351467138520841056237305271846578603412236417085
DLS 5: 012345678675804213821736450263457801148023765507618342430162587756281034384570126
...
DLS 8: 012345678341072856437128065768503214580264731206781543854617320625430187173856402
DLS 9: 012345678438716502205687314654831027321570486780264153176408235843152760567023841
DLS 10: 012345678341072856437128065760583214508264731286701543854617320625430187173856402
DLS 11: 012345678675804213821736450263417805548023761107658342430162587756281034384570126
DLS 12: 012345678584627031346501287835170462473856120157432806621083754260718345708264513
Adjacency matrix:
011000000000
100100000000
100111000000
011000110000
001001101000
001010010100
000110010010
000101100001
000010000010
000001000001
000000101000
000000010100
Different CFs set within combinatorial structure:
CF 1: 012345678123580764754862103680754321467138250841026537305271846578603412236417085
CF 2: 012345678123486750687501243456873021365718402530624817274150386801237564748062135
CF 3: 012345678123580764304268157861724530750831246487056321645172803578603412236417085
CF 4: 012345678123480756358761420485126307640873215867054132701632584534207861276518043
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{2:6, 4:6}
184. Structure 12N18M12C
DLSs within combinatorial structure:
DLS 1: 012345678231687504586071432658403721374852160740218356407136285865724013123560847
DLS 2: 012345678148263057357480126573816402865024713206731584620578341734152860481607235
DLS 3: 012345678158263047347580126473816502865024713206731485620478351734152860581607234
DLS 4: 012345678431687502586071234658203741374852160720418356207136485865724013143560827
DLS 5: 012345678431687502586701234658273041374852160720418356207136485865024713143560827
...
DLS 8: 012345678231687504856701432685473021374852160740218356407136285568024713123560847
DLS 9: 012345678431687502856071234685203741374852160720418356207136485568724013143560827
DLS 10: 012345678431687502856701234685273041374852160720418356207136485568024713143560827
DLS 11: 012345678148263057357482106573816420865024713206731584620578341734150862481607235
DLS 12: 012345678158263047347582106473816520865024713206731485620478351734150862581607234
Adjacency matrix:
011000000000
100111000000
100111111100
011000000011
011000000011
011000000000
001000000000
001000000000
001000000001
001000000001
000110000000
000110001100
Different CFs set within combinatorial structure:
CF 1: 012345678231687504586071432658403721374852160740218356407136285865724013123560847
CF 2: 012345678123478506571063284258601743837152460680714352704236815465827031346580127
CF 3: 012345678123478506571063284258631740807152463680714352734206815465827031346580127
CF 4: 012345678231687405804263751425716083657824130760158324183402567346570812578031246
CF 5: 012345678230786415481250367807462153346571802653028741724613580165837024578104236
...
CF 8: 012345678124087563483761025576413802237856140650278431361520784845602317708134256
CF 9: 012345678126087543483761025574613802230854167657208431341520786865472310708136254
CF 10: 012345678124087563483761025576413802230856147657208431361520784845672310708134256
CF 11: 012345678123478506671053284268501743837162450580714362704236815456827031345680127
CF 12: 012345678123478506671053284268531740807162453580714362734206815456827031345680127
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 8]
Multiset of vertices powers:
{1:2, 2:5, 4:4, 8:1}
185. Structure 12N18M12C
DLSs within combinatorial structure:
DLS 1: 012345678123568704684157230246703851358612047570486123805274316467031582731820465
DLS 2: 012345678835724061706283415684512703461870352247031586523167840358406127170658234
DLS 3: 012345678123568704684157230206783451350612847578406123845270316467031582731824065
DLS 4: 012345678123568704684157230246783051350612847578406123805274316467031582731820465
DLS 5: 012345678123568704684157230846723051350612847578406123205874316467031582731280465
...
DLS 8: 012345678123568704684157230241703856358612047570486123805274361467031582736820415
DLS 9: 012345678123568704684157230241783056350612847578406123805274361467031582736820415
DLS 10: 012345678123568704684157230841723056350612847578406123205874361467031582736280415
DLS 11: 012345678123568704684157230801723456350612847578406123245870361467031582736284015
DLS 12: 012345678831724065706283451684512703465870312247031586523167840358406127170658234
Adjacency matrix:
010000000000
101111111110
010000000001
010000000001
010000000001
010000000001
010000000001
010000000000
010000000001
010000000001
010000000001
001111101110
Different CFs set within combinatorial structure:
CF 1: 012345678123568704684157230246703851358612047570486123805274316467031582731820465
CF 2: 012345678124076835637804251856410327285163740703581462341728506570632184468257013
CF 3: 012345678120567834468132705243706581735618042387254160654820317806471253571083426
CF 4: 012345678123458706564081237386704125870613542708526314457230861231867450645172083
CF 5: 012345678120476835387162054645807321853210467476583102704628513568731240231054786
...
CF 8: 012345678123568704684157230241703856358612047570486123805274361467031582736820415
CF 9: 012345678123458706564081237386704125870613542701526384457230861238167450645872013
CF 10: 012345678120476835387162054645807321853210467476583102704621583561738240238054716
CF 11: 012345678120468753675081342483750126734516280851623407567204831348172065206837514
CF 12: 012345678124076835607834251856410327285163740730581462341728506573602184468257013
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 8, 10]
Multiset of vertices powers:
{1:2, 2:8, 8:1, 10:1}
186. Structure 12N20M3C
DLSs within combinatorial structure:
DLS 1: 012345678124038765876153240561870423347512806650487132405621387238764051783206514
DLS 2: 012345678846503217405267381183652704231876540327018465564780123750421836678134052
DLS 3: 012345678648523017465807321103256784831670542327018465584762103756481230270134856
DLS 4: 012345678836104257504267183485632701251876340327018465163780524740523816678451032
DLS 5: 012345678638124057564807123405236781851670342327018465183762504746583210270451836
...
DLS 8: 012345678150467832783126504561870423647213085238704156876531240324058761405682317
DLS 9: 012345678154068732873126540561870423647213805230487156406531287328754061785602314
DLS 10: 012345678280416735371582406458731062725063814163204587637158240804627351546870123
DLS 11: 012345678184726530857031246230157864423568017765482301671203485308614752546870123
DLS 12: 012345678483251067267018345625407831378620154841563720734186502506872413150734286
Adjacency matrix:
011111000000
100000111000
100000111100
100000111010
100000111000
100000000000
011110000000
011110000001
011110000000
001000000000
000100000000
000000010000
Different CFs set within combinatorial structure:
CF 1: 012345678124038765876153240561870423347512806650487132405621387238764051783206514
CF 2: 012345678120437865658174032871652340345710286786523104567801423234068751403286517
CF 3: 012345678124068735576821043753402186385710264861573420437156802240687351608234517
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 5]
Multiset of vertices powers:
{1:4, 4:4, 5:4}
187. Structure 12N20M6C
DLSs within combinatorial structure:
DLS 1: 012345678123407856807651234761834502276518043485763120350126487534280761648072315
DLS 2: 012345678637258401786432150258106734540873216801524367164087523423761085375610842
DLS 3: 012345678637258104786132450258406731540873216804521367461087523123764085375610842
DLS 4: 012345678631258704486732150258106437540873216807524361764081523123467085375610842
DLS 5: 012345678634258701186732450258406137540873216807521364761084523423167085375610842
...
DLS 8: 012345678123407865807561234761834502275618043486753120350126487634280751548072316
DLS 9: 012345678183764520654021387421587063375610842768432105236108754807256431540873216
DLS 10: 012345678183467520657021384721584063375610842468732105236108457804256731540873216
DLS 11: 012345678627853104706138452853406721548072316384521067461287530130764285275610843
DLS 12: 012345678627853401706438152853106724548072316381524067164287530430761285275610843
Adjacency matrix:
011110000000
100001111100
100001111100
100000100000
100000100000
011000000000
011110000000
011000000000
011000000011
011000000011
000000001100
000000001100
Different CFs set within combinatorial structure:
CF 1: 012345678123407856807651234761834502276518043485763120350126487534280761648072315
CF 2: 012345678231658704425087163657402831546873012803561427784136250160724385378210546
CF 3: 012345678230867145574126380728610453306574821145238067861702534457083216683451702
CF 4: 012345678123407865807561234761834502275618043486753120350126487634280751548072316
CF 5: 012345678120487356853126407486750123375618042761234580207561834534802761648073215
CF 6: 012345678231587460167034582628403157456728301803156724570261843345870216784612035
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{2:6, 4:4, 6:2}
188. Structure 12N20M6C
DLSs within combinatorial structure:
DLS 1: 012345678126478350385062714657834021748510263834627105563201487401786532270153846
DLS 2: 012345678784632501836517240275403816620154387548761032351028764163870425407286153
DLS 3: 012345678748631502836517240475203186680154327521768034354082761263470815107826453
DLS 4: 012345678684702531836517240205476813327154086548031762751628304170863425463280157
DLS 5: 012345678648701532836517240405276183387154026521038764754682301270463815163820457
...
DLS 8: 012345678135087264724608315568720431843516702386472150407861523651234087270153846
DLS 9: 012345678167438025573260184621584730436871502804612357240753816758106243385027461
DLS 10: 012345678260751843648173052321406587457038216503287461785620134876514320134862705
DLS 11: 012345678580276143461528307704631285843150726236087514357802461125764830678413052
DLS 12: 012345678574208136183560724730612845241857063368124507856473210605731482427086351
Adjacency matrix:
011110000000
100001110000
100001110000
100001111000
100001110000
011110000100
011110000000
011110000000
000100000010
000001000001
000000001000
000000000100
Different CFs set within combinatorial structure:
CF 1: 012345678126478350385062714657834021748510263834627105563201487401786532270153846
CF 2: 012345678120578346836457210568720431743016852274683105407861523651234087385102764
CF 3: 012345678123870564584206713856724130748613205367058421405162387631487052270531846
CF 4: 012345678124583760367058421638407152846712035750236814283174506405621387571860243
CF 5: 012345678120437856385674201806753124437561082254018367671802435543286710768120543
CF 6: 012345678127538064843670215508763142685417320276054831364182507451206783730821456
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 5, 5]
Multiset of vertices powers:
{1:2, 2:2, 4:6, 5:2}
189. Structure 12N20M6C
DLSs within combinatorial structure:
DLS 1: 012345678123867540386724051867403125604258713548671302751032864475180236230516487
DLS 2: 012345678485721306847536120230157864178063452756482031603214587321608745564870213
DLS 3: 012345678358017462421658307685402731263871045874563120530786214746120583107234856
DLS 4: 012345678321087465485612307658401732563278041874563120130726854746850213207134586
DLS 5: 012345678658417032321058467485632701260871345874563120546780213703124586137206854
...
DLS 8: 012345678847503126758426031103284567375162480486751302621038745230617854564870213
DLS 9: 012345678485703126847526031103257864378162450756481302621034587230618745564870213
DLS 10: 012345678841763520238406751173684205684057312567132084756820143405271836320518467
DLS 11: 012345678165870423648137052701256384537412860283704516824563701450681237376028145
DLS 12: 012345678574238061261087453827563140683420715430156287345712806106874532758601324
Adjacency matrix:
010000000000
101111000000
010000111100
010000111000
010000111010
010000111000
001111000000
001111000000
001111000001
001000000000
000010000000
000000001000
Different CFs set within combinatorial structure:
CF 1: 012345678123867540386724051867403125604258713548671302751032864475180236230516487
CF 2: 012345678123584706407658321635402187846217035280736514754123860368071452571860243
CF 3: 012345678124583760367058421405632187846217305283704516750126834638471052571860243
CF 4: 012345678124768035385102764751684302648017523867523410476230851503871246230456187
CF 5: 012345678124038765785162304651784032348610527867523410430276851576801243203457186
CF 6: 012345678123850764685723401504672183738416520867504312240137856476081235351268047
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 5]
Multiset of vertices powers:
{1:4, 4:4, 5:4}
190. Structure 12N20M6C
DLSs within combinatorial structure:
DLS 1: 012345678123854706658403127570612843267130584481567230306728451845076312734281065
DLS 2: 012345678730482165165037284427850316578614023803726451284561730651203847346178502
DLS 3: 012345678738402165165037284427850316570614823803726451284561730651283047346178502
DLS 4: 012345678123854706658403127570612843287130564461587230306728451845076312734261085
DLS 5: 012345678263850714851623407570482163647231580184567032326704851405178326738016245
...
DLS 8: 012345678263870514851623407570482163645231780184567032326704851407158326738016245
DLS 9: 012345678728604153164037285245870316370516842806453721487261530531782064653128407
DLS 10: 012345678428607153167034285245870316370516842806753421784261530531482067653128704
DLS 11: 012345678720684153164037285245870316378516042806453721487261530531702864653128407
DLS 12: 012345678420687153167034285245870316378516042806753421784261530531402867653128704
Adjacency matrix:
011000000000
100111110000
100111110000
011000000000
011000001111
011000000000
011000000000
011000001111
000010010000
000010010000
000010010000
000010010000
Different CFs set within combinatorial structure:
CF 1: 012345678123854706658403127570612843267130584481567230306728451845076312734281065
CF 2: 012345678235708461378621054401562837654870312867134205723456180146087523580213746
CF 3: 012345678235780461378621054401562837654078312867134205723456180146807523580213746
CF 4: 012345678123854706658403127570612843287130564461587230306728451845076312734261085
CF 5: 012345678123874506658403127570612843285130764461587230306728451847056312734261085
CF 6: 012345678123874506658403127570612843265130784481567230306728451847056312734281065
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6]
Multiset of vertices powers:
{2:8, 6:4}
191. Structure 12N20M6C
DLSs within combinatorial structure:
DLS 1: 012345678123786450784561032560132784245670813306458127451827306837204561678013245
DLS 2: 012345678264831507603758421421587360578013246187264035836102754750426183345670812
DLS 3: 012345678267831504603458721721584360578013246184267035836102457450726183345670812
DLS 4: 012345678834201567658723401401657823570812346167034285285160734723486150346578012
DLS 5: 012345678837201564658423701701654823570812346164037285285160437423786150346578012
...
DLS 8: 012345678123786450784561032568132704245670813306458127451027386837204561670813245
DLS 9: 012345678483750126761034582825403761246578013358126407134687250507261834670812345
DLS 10: 012345678183750426764031582825103764246578013358426107431687250507264831670812345
DLS 11: 012345678834201567658723401481657023570812346167034285205168734723486150346570812
DLS 12: 012345678837201564658423701781654023570812346164037285205168437423786150346570812
Adjacency matrix:
011110000000
100001110000
100001110000
100001001100
100001001100
011110000000
011000000000
011000000000
000110000011
000110000011
000000001100
000000001100
Different CFs set within combinatorial structure:
CF 1: 012345678123786450784561032560132784245670813306458127451827306837204561678013245
CF 2: 012345678124638705651870342835407126370256481467183250706521834548712063283064517
CF 3: 012345678123584760605837124487162053246073815761458302530621487854706231378210546
CF 4: 012345678123458706408736152756183420587064231361527084834201567670812345245670813
CF 5: 012345678123758406708436152456183720587064231361527084834201567670812345245670813
CF 6: 012345678123786450784561032568132704245670813306458127451027386837204561670813245
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4]
Multiset of vertices powers:
{2:4, 4:8}
192. Structure 12N20M7C
DLSs within combinatorial structure:
DLS 1: 012345678123476805365814720470651382286537014731208456504782163857063241648120537
DLS 2: 012345678231708546647081352568210734870452163483176205356827410125634087704563821
DLS 3: 012345678231708546647081352568230714870452163483176205156827430325614087704563821
DLS 4: 012345678123476805365814720407651283286537014731208456574083162850762341648120537
DLS 5: 012345678123476805365814720407651382286537014731208456574082163850763241648120537
...
DLS 8: 012345678873420165385614027426157803208536714731268450564703281657081342140872536
DLS 9: 012345678826470135385614027473152806708563214261738450534206781657081342140827563
DLS 10: 012345678876420135385614027423157806208563714761238450534706281657081342140872563
DLS 11: 012345678241708536637081452568230714870452163384176205156827340425613087703564821
DLS 12: 012345678234708516647081352568230741870152463183476205456827130325614087701563824
Adjacency matrix:
011000000000
100111000000
100111111100
011000000010
011000000000
011000000010
001000000011
001000000011
001000000001
001000000001
000101110000
000000111100
Different CFs set within combinatorial structure:
CF 1: 012345678123476805365814720470651382286537014731208456504782163857063241648120537
CF 2: 012345678123478506876152430450827163687014352541683027365201784738560241204736815
CF 3: 012345678123670854405128736374862510760534182856017243531286407248701365687453021
CF 4: 012345678123476805365814720407651283286537014731208456574083162850762341648120537
CF 5: 012345678123476805365814720407651382286537014731208456574082163850763241648120537
CF 6: 012345678123476805365814720470651283286537014731208456504783162857062341648120537
CF 7: 012345678123670854405128736374862510768534102856017243531206487240781365687453021
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 8]
Multiset of vertices powers:
{2:4, 3:4, 4:3, 8:1}
193. Structure 12N20M9C
DLSs within combinatorial structure:
DLS 1: 012345678126738405754081362483167250370652841608423517831506724567214083245870136
DLS 2: 012345678785460312136758024821506743204873156367214805453187260648021537570632481
DLS 3: 012345678785420316136758024821506743604873152367214805453187260248061537570632481
DLS 4: 012345678368712405754821360403187256176250843280463517831506724527634081645078132
DLS 5: 012345678168732405754821360403187256376250841280463517831506724527614083645078132
...
DLS 8: 012345678735028146846710523521806734650471382367284051483157260204563817178632405
DLS 9: 012345678735168042846710523521806734250471386367284150483057261604523817178632405
DLS 10: 012345678735068142846710523521806734250471386367284051483157260604523817178632405
DLS 11: 012345678568712403754823160403587216176230845280461537835106724327654081641078352
DLS 12: 012345678168752403754823160403587216576230841280461537835106724327614085641078352
Adjacency matrix:
011000000000
100111000000
100111000000
011000111100
011000111100
011000000000
000110000011
000110000000
000110000011
000110000000
000000101000
000000101000
Different CFs set within combinatorial structure:
CF 1: 012345678126738405754081362483167250370652841608423517831506724567214083245870136
CF 2: 012345678235067841426781350841502763657813402308674125760158234173420586584236017
CF 3: 012345678235704861784261530561837204678012345803456127450123786127680453346578012
CF 4: 012345678124657803857203164683524017578036241406781532735168420360412785241870356
CF 5: 012345678230784561456132780683450127578013246861527304704261835127806453345678012
CF 6: 012345678235608741187460352506821437764153280348276015450782163873014526621537804
CF 7: 012345678230487561756132480683750124578013246861524307407261835124806753345678012
CF 8: 012345678234086751587261034761534280670812345403758126856123407128407563345670812
CF 9: 012345678124637805857201364683124057378056241406783512731568420560412783245870136
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{2:6, 4:4, 6:2}
194. Structure 12N20M12C
DLSs within combinatorial structure:
DLS 1: 012345678120567834846132507563804712654078321387621045731256480408713256275480163
DLS 2: 012345678438256710261780453725413806387621045654078321146807532870532164503164287
DLS 3: 012345678738256410261480753425713806387621045654078321176804532840532167503167284
DLS 4: 012345678468253710231780456725416803387621045654078321143807562870562134506134287
DLS 5: 012345678768253410231480756425716803387621045654078321173804562840562137506137284
...
DLS 8: 012345678468213750235780416721456803387621045654078321543807162870162534106534287
DLS 9: 012345678768213450235480716421756803387621045654078321573804162840162537106537284
DLS 10: 012345678620517834846132507563804712154078326387621045731256480408763251275480163
DLS 11: 012345678140567832826134507563802714654078321387621045731456280208713456475280163
DLS 12: 012345678640517832826134507563802714154078326387621045731456280208763451475280163
Adjacency matrix:
011111111000
100000000111
100000000111
100000000010
100000000010
100000000010
100000000010
100000000010
100000000010
011000000000
011111111000
011000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120567834846132507563804712654078321387621045731256480408713256275480163
CF 2: 012345678120456837358607124683512740235874016467031582806723451741280365574168203
CF 3: 012345678120456837358607124683512740835274016467031582206783451741820365574168203
CF 4: 012345678120456837358607124683512740231874056467031582806723415745280361574168203
CF 5: 012345678120456837358607124683512740831274056467031582206783415745820361574168203
...
CF 8: 012345678120456837358607124683512740201874356467031582836720415745283061574168203
CF 9: 012345678120456837358607124683512740801274356467031582236780415745823061574168203
CF 10: 012345678124067835736801254287156340658473021860534712341628507503712486475280163
CF 11: 012345678124067835731806254287651340658473021860534712346128507503712486475280163
CF 12: 012345678120567834841632507563804712654078321387126045736251480408713256275480163
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 8, 8]
Multiset of vertices powers:
{2:8, 4:2, 8:2}
195. Structure 12N20M12C
DLSs within combinatorial structure:
DLS 1: 012345678120487356584673210836724105458136027365018742741260583273501864607852431
DLS 2: 012345678341872560726180354468507231235014786870263415154736802607458123583621047
DLS 3: 012345678341852760726180354468507231237014586870263415154736802605478123583621047
DLS 4: 012345678570684321685723410834261705168432057327018546246570183453107862701856234
DLS 5: 012345678150487326284673510836724105428136057365018742741560283573201864607852431
...
DLS 8: 012345678158407326284673510836724105420136857365018742741560283573281064607852431
DLS 9: 012345678261458703708136254426507381687014532874623015153782460345870126530261847
DLS 10: 012345678261478503708136254426507381685014732874623015153782460347850126530261847
DLS 11: 012345678678504321586723410834261705150432867327018546245670183463187052701856234
DLS 12: 012345678670584321586723410834261705158432067327018546245670183463107852701856234
Adjacency matrix:
011000000000
100111110000
100111110000
011000001100
011000000000
011000001100
011000000000
011000000000
000101000011
000101000011
000000001100
000000001100
Different CFs set within combinatorial structure:
CF 1: 012345678120487356584673210836724105458136027365018742741260583273501864607852431
CF 2: 012345678123687450845102736657821304706534812438076521574260183360718245281453067
CF 3: 012345678123687540854102736647821305706534812538076421475260183360718254281453067
CF 4: 012345678123458760684107352507684123348270516435061287761532804850726431276813045
CF 5: 012345678123684705384761250458126037246570813807453162761038524635207481570812346
...
CF 8: 012345678123086547478120365354762810267453081845671203631807452506218734780534126
CF 9: 012345678123568740471680235245836107306471582758124063860257314634702851587013426
CF 10: 012345678123568740471680235345826107206471583758134062860257314634702851587013426
CF 11: 012345678123057846864103752476581320538762401751238064245670183607814235380426517
CF 12: 012345678127456830365780124784162053631078542870534261246807315503621487458213706
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{2:6, 4:4, 6:2}
196. Structure 12N20M12C
DLSs within combinatorial structure:
DLS 1: 012345678120476835563784120635827401784150263357261084846503712201638547478012356
DLS 2: 012345678278031546346508712784150263635827401501684327463712850850276134127463085
DLS 3: 012345678278031546326508714784150263635827401501684327463712850850476132147263085
DLS 4: 012345678320576814561784320635827401784150263147263085856401732203618547478032156
DLS 5: 012345678120576834563784120635827401784150263347261085856403712201638547478012356
...
DLS 8: 012345678340576812561782340635827401784150263127463085856201734403618527278034156
DLS 9: 012345678320476815561784320635827401784150263157263084846501732203618547478032156
DLS 10: 012345678140276835563782140635827401784150263357461082826503714401638527278014356
DLS 11: 012345678340276815561782340635827104784150263157463082826504731403618527278031456
DLS 12: 012345678340276815561782340635827401784150263157463082826501734403618527278034156
Adjacency matrix:
011000000000
100111111111
100111111111
011000000000
011000000000
011000000000
011000000000
011000000000
011000000000
011000000000
011000000000
011000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835563784120635827401784150263357261084846503712201638547478012356
CF 2: 012345678120687435583476012736524180851762304364108257405831726678210543247053861
CF 3: 012345678120568743458736201586421037741053862835607124267184350603872415374210586
CF 4: 012345678123578064806123745584701326761052483635284107450637812247816530378460251
CF 5: 012345678120576834563784120635827401784150263347261085856403712201638547478012356
...
CF 8: 012345678123578064806132745584701326761053482635284107450627813247816530378460251
CF 9: 012345678123067854874106235285610743540278316608453127731824560467531082356782401
CF 10: 012345678123067854874106235285610743546872310608453127731284506467531082350728461
CF 11: 012345678123067854674108235285610743540872316806453127731284560467531082358726401
CF 12: 012345678123067854874106235285610743540872316608453127731284560467531082356728401
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10]
Multiset of vertices powers:
{2:10, 10:2}
197. Structure 12N20M12C
DLSs within combinatorial structure:
DLS 1: 012345678123580746307416582658103427534762801746038215481257360870624153265871034
DLS 2: 012345678587013264276830451823461705365124087401587326140678532634752810758206143
DLS 3: 012345678123580746357416082568103427634752801740638215481267350875024163206871534
DLS 4: 012345678123570846357416082568103427634852701740638215481267350875024163206781534
DLS 5: 012345678143580726357216084568103247634752801720638415281467350875024163406871532
...
DLS 8: 012345678143580726307216584658103247534762801726038415281457360870624153465871032
DLS 9: 012345678143570826307216584658103247534862701726038415281457360870624153465781032
DLS 10: 012345678487013265276830541823561704365124087501487326150678432634752810748206153
DLS 11: 012345678587103264276830451823461705365024187401587326140678532634752810758216043
DLS 12: 012345678487103265276830541823561704365024187501487326150678432634752810748216053
Adjacency matrix:
010000000000
101111111000
010000000111
010000000111
010000000111
010000000111
010000000000
010000000000
010000000000
001111000000
001111000000
001111000000
Different CFs set within combinatorial structure:
CF 1: 012345678123580746307416582658103427534762801746038215481257360870624153265871034
CF 2: 012345678123587460785162304801734526348610752534076281467201835650823147276458013
CF 3: 012345678123580746357416082568103427634752801740638215481267350875024163206871534
CF 4: 012345678123570846357416082568103427634852701740638215481267350875024163206781534
CF 5: 012345678126708543834052761483571026578460312657213804765824130201637485340186257
...
CF 8: 012345678123750846645837102478603251831472065706218534350126487267584310584061723
CF 9: 012345678120486753547830126738512460871064235683751042254678301406123587365207814
CF 10: 012345678123687045536418720304571286748130562687024153475263801860752314251806437
CF 11: 012345678123587460785162304801734526348610257534026781467201835650873142276458013
CF 12: 012345678123687045536418720304571286748136502687024153475203861860752314251860437
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 8]
Multiset of vertices powers:
{1:4, 4:7, 8:1}
198. Structure 12N21M2C
DLSs within combinatorial structure:
DLS 1: 012345678123407856456738210270861543601573482785024361834652107568210734347186025
DLS 2: 012345678270618534308276145856430712547861023134752806765124380621083457483507261
DLS 3: 012345678785064123841607352538276014473158206256413780627580431304721865160832547
DLS 4: 012345678785164023841607352538276104473058216256413780627580431304721865160832547
DLS 5: 012345678547823160185062734623784051768210345801536427350478216436107582274651803
...
DLS 8: 012345678153407826426738510570861243601273485785024361834652107268510734347186052
DLS 9: 012345678368250741574821063147502386285634107820167534406713825653478210731086452
DLS 10: 012345678270618534308276145586430712847561023134752806765124380621083457453807261
DLS 11: 012345678456781302623510487760153824834027561347608215281436750175862043508274136
DLS 12: 012345678547832160185063724623784051768210345801526437350478216436107582274651803
Adjacency matrix:
011111100000
100111110000
100000000000
110011101000
110101100100
110110100010
110111000001
010000000000
000100000000
000010000000
000001000000
000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678123407856456738210270861543601573482785024361834652107568210734347186025
CF 2: 012345678126708543835674021780413256304862715457231860261587304673150482548026137
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6]
Multiset of vertices powers:
{1:6, 6:6}
199. Structure 12N21M6C
DLSs within combinatorial structure:
DLS 1: 012345678120678453345786012504861237267534801831207564756423180678012345483150726
DLS 2: 012345678534012867678201345156780423720453186483126750807564231345678012261837504
DLS 3: 012345678834012567678201345156780423720453186483126750507864231345678012261537804
DLS 4: 012345678534012867678201345156720483780453126423186750807564231345678012261837504
DLS 5: 012345678834012567678201345156720483780453126423186750507864231345678012261537804
...
DLS 8: 012345678120678453345786012564801237207534861831267504756423180678012345483150726
DLS 9: 012345678123678450345786012504861237267534801831207564756420183678012345480153726
DLS 10: 012345678123678450345786012564801237207534861831267504756420183678012345480153726
DLS 11: 012345678734012865658201347176580423520473186483126750805764231347658012261837504
DLS 12: 012345678734012865658201347176520483580473126423186750805764231347658012261837504
Adjacency matrix:
011110000000
100001111100
100000011100
100000011100
100000011100
010000000000
010000000010
011110000011
011110000000
011110000000
000000110000
000000010000
Different CFs set within combinatorial structure:
CF 1: 012345678120678453345786012504861237267534801831207564756423180678012345483150726
CF 2: 012345678120678453345786012564801237207534861831267504756423180678012345483150726
CF 3: 012345678123678450345786012564801237207534861831267504756420183678012345480153726
CF 4: 012345678123486705864057231781534062245670813608123457356708124437261580570812346
CF 5: 012345678123687405874056231781534062245760813608123754357408126436271580560812347
CF 6: 012345678126538704681470253508724136843062517457183062735806421274651380360217845
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{1:2, 2:2, 4:6, 6:2}
200. Structure 12N21M12C
DLSs within combinatorial structure:
DLS 1: 012345678123680547586471032608713425374852160740138256457206381865024713231567804
DLS 2: 012345678481267035753180426527436801865024713206571384630718542374852160148603257
DLS 3: 012345678581267034743180526427536801865024713206471385630718452374852160158603247
DLS 4: 012345678143680527586271034608713245374852160720138456257406381865024713431567802
DLS 5: 012345678143680527586271034604713285378452160720138456257806341865024713431567802
...
DLS 8: 012345678143680527586271034608713245374852160725138406257406381860524713431067852
DLS 9: 012345678581267034743180526427536801865024713356471280630718452274803165108652347
DLS 10: 012345678581267034743180526427536801865024713256471380630718452374802165108653247
DLS 11: 012345678481267035753180426527436801865024713306571284630718542274853160148602357
DLS 12: 012345678581267034743180526427536801865024713306471285630718452274853160158602347
Adjacency matrix:
011000000000
100100000000
100111110000
011000001111
001000001101
001000000000
001000001101
001000001101
000110110000
000110110000
000100000000
000110110000
Different CFs set within combinatorial structure:
CF 1: 012345678123680547586471032608713425374852160740138256457206381865024713231567804
CF 2: 012345678123568047581704362837412506206871453745136280360257814458620731674083125
CF 3: 012345678123487506647051382486572130308614257851736024734260815265803741570128463
CF 4: 012345678123587406547061382786452130358614027801736245635270814264803751470128563
CF 5: 012345678123578460348651027580427136654710382701236845265803714837064251476182503
...
CF 8: 012345678123587406547061382786452130358614027804736215635270841261803754470128563
CF 9: 012345678123078546501784362836412057287561403645137280370256814458620731764803125
CF 10: 012345678123068547501784362837412056286571403745136280360257814458620731674803125
CF 11: 012345678123578046581704362836412507207861453645137280370256814458620731764083125
CF 12: 012345678123578046501784362836412507287061453645137280370256814458620731764803125
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{1:2, 2:2, 4:6, 6:2}
201. Structure 12N22M5C
DLSs within combinatorial structure:
DLS 1: 012345678230754816674128035746832501128570463305416287853607124467281350581063742
DLS 2: 012345678746812503105436287530724816281063745674158032467281350853607124328570461
DLS 3: 012345678476812503105736284530427816281063745647158032764281350853604127328570461
DLS 4: 012345678746812503105436287230754816581063742674128035467281350853607124328570461
DLS 5: 012345678476812503105736284230457816581063742647128035764281350853604127328570461
...
DLS 8: 012345678230756814476128035764812503328570461105634287853407126647281350581063742
DLS 9: 012345678320754816673128045746813502438570261105236487854607123267481350581062734
DLS 10: 012345678280754316374128065748612503826570431105463287653807124467231850531086742
DLS 11: 012345678756812403501436287230751846485063712674528031167284350843607125328170564
DLS 12: 012345678546812703108436257230574816871063542684127035467251380753608124325780461
Adjacency matrix:
011110000000
100001110000
100001110000
100001111100
100001110000
011110000000
011110000011
011110000000
000100000001
000100000010
000000100100
000000101000
Different CFs set within combinatorial structure:
CF 1: 012345678230754816674128035746832501128570463305416287853607124467281350581063742
CF 2: 012345678230567841426078135761853204173420586345681720857102463608714352584236017
CF 3: 012345678230571846547810263861207534705468312386054721423786150654123087178632405
CF 4: 012345678230517846426078135761853204673420581345681720857102463108764352584236017
CF 5: 012345678123608754758436201270514836847063512634721085481257360506872143365180427
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{2:4, 4:6, 6:2}
202. Structure 12N24M6C
DLSs within combinatorial structure:
DLS 1: 012345678123587460374026185865173024206751843451268307580634712647802531738410256
DLS 2: 012345678830256714725863041374682150158074236287401563603518427461720385546137802
DLS 3: 012345678830256714725813046374682150658074231287401563103568427461720385546137802
DLS 4: 012345678845206713723864051470682135158473206287531460634018527561720384306157842
DLS 5: 012345678854206713723864051470682135148573206287431560635018427561720384306157842
...
DLS 8: 012345678123587460274036185865173024306751842451268307580624713647802531738410256
DLS 9: 012345678423581067304126785865703421276450813751268304580637142647812530138074256
DLS 10: 012345678423581067307126485865403721246750813751268304580637142674812530138074256
DLS 11: 012345678423581067204136785865703421376450812751268304580627143647812530138074256
DLS 12: 012345678423581067207136485865403721346750812751268304580627143674812530138074256
Adjacency matrix:
011111100000
100000011111
100000011111
100000010000
100000011010
100000010000
100000011010
011111100000
011010100000
011000000000
011010100000
011000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123587460374026185865173024206751843451268307580634712647802531738410256
CF 2: 012345678123458706756831420387102564245670813860524137401786352534267081678013245
CF 3: 012345678123487065481763502765824130548072316307156284850631427634208751276510843
CF 4: 012345678123407865401763582765824130548072316387156204850631427634280751276518043
CF 5: 012345678123587460506738124480163752345872016761024583634251807857406231278610345
CF 6: 012345678126587430503768124480136752345872016761024583634251807857403261278610345
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{2:4, 4:4, 6:4}
203. Structure 12N24M10C
DLSs within combinatorial structure:
DLS 1: 012345678120478536437682150253814067374560281846251703685107324501736842768023415
DLS 2: 012345678685732041821503764740651382106827453357014826473286510268470135534168207
DLS 3: 012345678685732041821503764748651302106827453357014826473286510260478135534160287
DLS 4: 012345678126478530437082156253814067374560281648251703865107324501736842780623415
DLS 5: 012345678120478536437682150253814067374560281648251703865107324501736842786023415
...
DLS 8: 012345678140278536237684150453812067374560281826451703685107342501736824768023415
DLS 9: 012345678140278536237684150453812067374560281628451703865107342501736824786023415
DLS 10: 012345678148270536237684150453812067374568201620451783865107342501736824786023415
DLS 11: 012345678485732061821503746768451302106827453357016824673284510240678135534160287
DLS 12: 012345678485732061821503746760451382106827453357016824673284510248670135534168207
Adjacency matrix:
011000000000
100111111100
100111111100
011000000000
011000000011
011000000011
011000000000
011000000000
011000000011
011000000011
000011001100
000011001100
Different CFs set within combinatorial structure:
CF 1: 012345678120478536437682150253814067374560281846251703685107324501736842768023415
CF 2: 012345678123876504364781250678513042250467183706128435487250361845032716531604827
CF 3: 012345678124083765851726034783654102540872316467138520305261487638407251276510843
CF 4: 012345678120478536437682150253814067374560281648251703865107324501736842786023415
CF 5: 012345678123678540234580167746812053580167234658723401465031782807254316371406825
CF 6: 012345678120486357465738021803674512784013265548207136357162804236851740671520483
CF 7: 012345678123487560361752084780634125548073216457168302605821437834206751276510843
CF 8: 012345678123487560361752084708634125540873216457168302685021437834206751276510843
CF 9: 012345678124568703863021457407186325345670812758234160681702534236457081570813246
CF 10: 012345678123876504364751280678513042280467153706128435457280361845032716531604827
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8]
Multiset of vertices powers:
{2:4, 4:6, 8:2}
204. Structure 12N24M12C
DLSs within combinatorial structure:
DLS 1: 012345678123586740268470315407132856746851032834067521581623407375208164650714283
DLS 2: 012345678781203564345762081830657142157430826263184705674018253428576310506821437
DLS 3: 012345678781203564345762081830657142158430726263174805674018253427586310506821437
DLS 4: 012345678781203564345712086830657142657430821263184705174068253428576310506821437
DLS 5: 012345678781203564345712086830657142658430721263174805174068253427586310506821437
...
DLS 8: 012345678123580746708426315467132850246851037834067521581673402375208164650714283
DLS 9: 012345678123580746208476315467132850746851032834067521581623407375208164650714283
DLS 10: 012345678123586740768420315407132856246851037834067521581673402375208164650714283
DLS 11: 012345678423586710768120345107432856246851037831067524584673102375208461650714283
DLS 12: 012345678423586710268170345107432856746851032831067524584623107375208461650714283
Adjacency matrix:
011111100000
100000011100
100000011100
100000011100
100000011100
100000000111
100000000111
011110000000
011110000000
011111100000
000001100000
000001100000
Different CFs set within combinatorial structure:
CF 1: 012345678123586740268470315407132856746851032834067521581623407375208164650714283
CF 2: 012345678123867405865701324431682750546073812380124567704258136257436081678510243
CF 3: 012345678123486705635804127764153082548672310370218546806527431257031864481760253
CF 4: 012345678123768405861507234380426157245670813456183720704831562637254081578012346
CF 5: 012345678123760845456873120240186753674052381761238504837501462508417236385624017
...
CF 8: 012345678120567843436081725867152304674230581245678130751803462308714256583426017
CF 9: 012345678120486735506834127754162380648573012273018546835627401367201854481750263
CF 10: 012345678120567843436081725768152304674230581245678130851703462307814256583426017
CF 11: 012345678123658740486072513267501834501834267834267105750183426375416082648720351
CF 12: 012345678120486735784160253836524107548673012273018546461752380357201864605837421
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{2:2, 4:8, 6:2}
205. Structure 12N24M12C
DLSs within combinatorial structure:
DLS 1: 012345678123578460248653017580427136657014382701236845365801724834760251476182503
DLS 2: 012345678865703241457018362204836715348651027583172406670524183126487530731260854
DLS 3: 012345678861703245457018362204836751348651027583172406670524183126487530735260814
DLS 4: 012345678865730241457018362234806715348651027583172406670524183126487530701263854
DLS 5: 012345678861730245457018362234806751348651027583172406670524183126487530705263814
...
DLS 8: 012345678123478560248653017480527136657014382701236854364801725835760241576182403
DLS 9: 012345678523178460248653017180427536657814302701236845365081724834760251476502183
DLS 10: 012345678423178560248653017180527436657814302701236854364081725835760241576402183
DLS 11: 012345678123578460248653017580427136657814302701236845365081724834760251476102583
DLS 12: 012345678123478560248653017480527136657814302701236854364081725835760241576102483
Adjacency matrix:
011110000000
100001111111
100001110000
100001111111
100001110000
011110000000
011110000000
011110000000
010100000000
010100000000
010100000000
010100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123578460248653017580427136657014382701236845365801724834760251476182503
CF 2: 012345678123457860647120583450683217368712405735068142504871326876234051281506734
CF 3: 012345678123457860647120583450683217368712405735068142504876321871234056286501734
CF 4: 012345678123578460348156027701632845657410382580724136265803714834067251476281503
CF 5: 012345678123578460348156027704632815657410382580724136265803741831067254476281503
...
CF 8: 012345678123478560248653017480527136657014382701236854364801725835760241576182403
CF 9: 012345678123587406647150382586472130358214067834706215705623841261038754470861523
CF 10: 012345678123487506647150382486572130358214067835706214704623851261038745570861423
CF 11: 012345678123578460248653017580427136657814302701236845365081724834760251476102583
CF 12: 012345678123478560248653017480527136657814302701236854364081725835760241576102483
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8]
Multiset of vertices powers:
{2:4, 4:6, 8:2}
206. Structure 12N25M6C
DLSs within combinatorial structure:
DLS 1: 012345678120567834476128503563812740358674021785403162231780456804256317647031285
DLS 2: 012345678731280456265473180478156302687021543806734215120567834543802761354618027
DLS 3: 012345678731280456245673180678154302487021563804736215120567834563802741356418027
DLS 4: 012345678120567834476128503563812740358674021285403167731280456804756312647031285
DLS 5: 012345678120567834476138502563812740358674021285403167731280456804756213647021385
...
DLS 8: 012345678120567834476138502563802741358674120285413067731280456804756213647021385
DLS 9: 012345678731280456265473180478136502687021345806754213120567834543802761354618027
DLS 10: 012345678731280456245673180678134502487021365804756213120567834563802741356418027
DLS 11: 012345678731680452645273180278134506487021365804756213120567834563802741356418027
DLS 12: 012345678731680452645273180278154306487021563804736215120567834563802741356418027
Adjacency matrix:
011000000000
100111110000
100111110000
011000001100
011000001100
011000001111
011000000001
011000001111
000111010000
000111010000
000001010000
000001110000
Different CFs set within combinatorial structure:
CF 1: 012345678120567834476128503563812740358674021785403162231780456804256317647031285
CF 2: 012345678120567834476138502563802741358674120285413067731280456804756213647021385
CF 3: 012345678120567834476128503563802741358674120285413067731280456804756312647031285
CF 4: 012345678120567834476128503563812740358674021285403167731280456804756312647031285
CF 5: 012345678120567834476138502563812740358674021285403167731280456804756213647021385
CF 6: 012345678120567834476128503563802741358674120785413062231780456804256317647031285
Ascending sorted vector of vertices powers:
[2, 2, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{2:2, 3:2, 4:4, 6:4}
207. Structure 12N28M6C
DLSs within combinatorial structure:
DLS 1: 012345678123586704706854132584123067648072315370218546835760421267431850451607283
DLS 2: 012345678381457062654730281128564703870213546243076815467821350735608124506182437
DLS 3: 012345678381754062657430281128567403870213546243076815764821350435608127506182734
DLS 4: 012345678381407562654730281128564703875213046243076815467821350730658124506182437
DLS 5: 012345678381704562657430281128567403875213046243076815764821350430658127506182734
...
DLS 8: 012345678423586701706851432581423067648072315370218546835760124267134850154607283
DLS 9: 012345678128536704786054132504123867643872015370218546835760421267481350451607283
DLS 10: 012345678428536701786051432501423867643872015370218546835760124267184350154607283
DLS 11: 012345678381457062654730281128564703876213540243076815407821356735608124560182437
DLS 12: 012345678381754062657430281128567403876213540243076815704821356435608127560182734
Adjacency matrix:
011110000000
100001111100
100001111100
100001110000
100001110000
011110000011
011110000011
011110000000
011000000011
011000000011
000001101100
000001101100
Different CFs set within combinatorial structure:
CF 1: 012345678123586704706854132584123067648072315370218546835760421267431850451607283
CF 2: 012345678123608745608453127531782460467531082374026851246817503850274316785160234
CF 3: 012345678123608745608453127531762480487531062374026851246817503850274316765180234
CF 4: 012345678120478536357281064608512347734860251263754180471603825845036712586127403
CF 5: 012345678123067854781254063657483201340672185506138427834706512468521730275810346
CF 6: 012345678123067854781234065657483201540672183306158427834706512468521730275810346
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{4:8, 6:4}
208. Structure 12N28M12C
DLSs within combinatorial structure:
DLS 1: 012345678120678534253786140468502317384167205671054823805413762547231086736820451
DLS 2: 012345678671032845865203714357481026136820457740618532423756180208574361584167203
DLS 3: 012345678471032865845203716357681024136820457760418532623754180208576341584167203
DLS 4: 012345678671032845865203714357481026736820451140678532423756180208514367584167203
DLS 5: 012345678471032865845203716357681024736820451160478532623754180208516347584167203
...
DLS 8: 012345678120678534253786140468502317584167203671034825805413762347251086736820451
DLS 9: 012345678140678532453786120268504317384167205671052843805213764527431086736820451
DLS 10: 012345678140678532453786120268504317584167203671032845805213764327451086736820451
DLS 11: 012345678124678530253786104468502317380167245671054823805413762547231086736820451
DLS 12: 012345678124678530253786104468502317580167243671034825805413762347251086736820451
Adjacency matrix:
011111100000
100000011100
100000011111
100000011100
100000011111
100000010011
100000010011
011111100000
011110000000
011110000000
001011100000
001011100000
Different CFs set within combinatorial structure:
CF 1: 012345678120678534253786140468502317384167205671054823805413762547231086736820451
CF 2: 012345678123687540308254716874506321647130285765021834581762403450873162236418057
CF 3: 012345678120678345608453127531762480487531062274016853346827501853204716765180234
CF 4: 012345678123458067846073512237581406501632784684207135760124853375816240458760321
CF 5: 012345678120678345608453127531782460467531082274016853346827501853204716785160234
...
CF 8: 012345678120678534253786140468502317584167203671034825805413762347251086736820451
CF 9: 012345678124538706467152380506821437380764251751483062835076124678210543243607815
CF 10: 012345678124538706467182350506821437350764281781453062835076124678210543243607815
CF 11: 012345678123076845364108752478621530207853461851267304780534126536412087645780213
CF 12: 012345678123076845304168752478621530267853401851207364780534126536412087645780213
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{4:8, 6:4}
209. Structure 12N32M6C
DLSs within combinatorial structure:
DLS 1: 012345678230618745681457023827506314356720481768134502143072856475283160504861237
DLS 2: 012345678541872036368704512485237160734168205603451827250683741827016354176520483
DLS 3: 012345678741852036368704512485237160534168207603471825250683741827016354176520483
DLS 4: 012345678521874036368702514285437160734168205603251847450683721847016352176520483
DLS 5: 012345678721854036368702514285437160534168207603271845450683721847016352176520483
...
DLS 8: 012345678230418765481657023827504316356720481748136502163072854675283140504861237
DLS 9: 012345678258430761473681025827154306186027453340716582761502834635278140504863217
DLS 10: 012345678258410763473681025827154306386027451140736582761502834635278140504863217
DLS 11: 012345678321074856568132704275483160704861235683257041430618527847506312156720483
DLS 12: 012345678341072856568134702475283160704861235683457021230618547827506314156720483
Adjacency matrix:
011110000000
100001111100
100001111100
100001111100
100001111100
011110000011
011110000011
011110000000
011110000011
011110000011
000001101100
000001101100
Different CFs set within combinatorial structure:
CF 1: 012345678230618745681457023827506314356720481768134502143072856475283160504861237
CF 2: 012345678123586740456027183874163052548270361730618524385702416601854237267431805
CF 3: 012345678128536740456027183874163052543270861730618524385702416601854237267481305
CF 4: 012345678123586740456207183874163052548072361730618524385720416601854237267431805
CF 5: 012345678128536740456207183874163052543072861730618524385720416601854237267481305
CF 6: 012345678230158764786210453408561237345672081671084325153726840827403516564837102
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6]
Multiset of vertices powers:
{4:4, 6:8}
210. Structure 12N32M10C
DLSs within combinatorial structure:
DLS 1: 012345678123674850534708261275816043468531702386057124801462537647280315750123486
DLS 2: 012345678860712534183627450548270316621453087734168205456081723375806142207534861
DLS 3: 012345678860712534123687450548270316681453027734168205456021783375806142207534861
DLS 4: 012345678861702534183627450548270316620453187734168205456081723375816042207534861
DLS 5: 012345678861702534123687450548270316680453127734168205456021783375816042207534861
...
DLS 8: 012345678123684750534768201275816043407531862368057124681402537846270315750123486
DLS 9: 012345678123684750534768201275816043407531862386057124861402537648270315750123486
DLS 10: 012345678123674850534768201275816043408531762386057124861402537647280315750123486
DLS 11: 012345678123684750534708261265817043476531802387056124801472536748260315650123487
DLS 12: 012345678123684750534708261275816043467531802386057124801462537648270315750123486
Adjacency matrix:
011110000000
100001111111
100001111111
100001111111
100001111111
011110000000
011110000000
011110000000
011110000000
011110000000
011110000000
011110000000
Different CFs set within combinatorial structure:
CF 1: 012345678123674850534708261275816043468531702386057124801462537647280315750123486
CF 2: 012345678127538406586120734408753162675012843731684520864201357350467281243876015
CF 3: 012345678127538406586102734405783162678210543731654820864021357350467281243876015
CF 4: 012345678124538706586120437708453162675012843431687520867201354350764281243876015
CF 5: 012345678124538706586102437705483162678210543431657820867021354350764281243876015
CF 6: 012345678120678543675834021263481750451067382708253164347512806834706215586120437
CF 7: 012345678123568704467281350841607523375012846508423167786150432650734281234876015
CF 8: 012345678123684750534768201275816043407531862386057124861402537648270315750123486
CF 9: 012345678123674850534768201275816043408531762386057124861402537647280315750123486
CF 10: 012345678123680754547132086870514362384761205468273510601457823235806147756028431
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8]
Multiset of vertices powers:
{4:8, 8:4}
211. Structure 12N32M12C
DLSs within combinatorial structure:
DLS 1: 012345678120678543375814026263481750451067382708253164647532801834706215586120437
DLS 2: 012345678345182760268470315801734526536821407427506831780653142673218054154067283
DLS 3: 012345678345812760268470315801734526536128407427506831780653142673281054154067283
DLS 4: 012345678345182760268470315831704526506821437427536801780653142673218054154067283
DLS 5: 012345678345812760268470315831704526506128437427536801780653142673281054154067283
...
DLS 8: 012345678128670543385714026263481750451067382870253164647532801734806215506128437
DLS 9: 012345678128670543375814026263451780481067352750283164647532801834706215506128437
DLS 10: 012345678128607543357814026263481750471560382580273164645732801834056217706128435
DLS 11: 012345678128607543375814026263481750451760382780253164647532801834076215506128437
DLS 12: 012345678128607543375814026263451780481760352750283164647532801834076215506128437
Adjacency matrix:
011110000000
100001111111
100001111111
100001111111
100001111111
011110000000
011110000000
011110000000
011110000000
011110000000
011110000000
011110000000
Different CFs set within combinatorial structure:
CF 1: 012345678120678543375814026263481750451067382708253164647532801834706215586120437
CF 2: 012345678127453806306182457781506324673218045850734162465821730534067281248670513
CF 3: 012345678127453806306182457781536024670218345853704162465821730534067281248670513
CF 4: 012345678124538706586021437708453162675210843431687520867102354350764281243876015
CF 5: 012345678124538706586021437705483162678210543431657820867102354350764281243876015
...
CF 8: 012345678123486750534807261387650124476531802265718043801274536748062315650123487
CF 9: 012345678123476850534807261386750124468531702275618043801264537647082315750123486
CF 10: 012345678123458706867123540781534062670812354348706125506281437435670281254067813
CF 11: 012345678123486750534867201386750124407531862275618043861204537648072315750123486
CF 12: 012345678123476850534867201386750124408531762275618043861204537647082315750123486
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8]
Multiset of vertices powers:
{4:8, 8:4}
212. Structure 12N36M5C
DLSs within combinatorial structure:
DLS 1: 012345678124538706786150432508423167675012843431687520867201354350764281243876015
DLS 2: 012345678586124037351067284427531806248670315863402751135786420704853162670218543
DLS 3: 012345678286154037351067284427531806548670312863402751135786420704823165670218543
DLS 4: 012345678586421037354067281127534806248670315863102754435786120701853462670218543
DLS 5: 012345678286451037354067281127534806548670312863102745435786120701823564670218453
...
DLS 8: 012345678124578306786150432508427163635012847471683520863201754350764281247836015
DLS 9: 012345678124568703786150432508423167375012846431687520867201354650734281243876015
DLS 10: 012345678124538706687150432508423167765012843431786520876201354350674281243867015
DLS 11: 012345678127568403486150732508723164375012846731684520864201357650437281243876015
DLS 12: 012345678127538406486150732508723164675012843731684520864201357350467281243876015
Adjacency matrix:
011111100000
100000011111
100000011111
100000011111
100000011111
100000011111
100000011111
011111100000
011111100000
011111100000
011111100000
011111100000
Different CFs set within combinatorial structure:
CF 1: 012345678124538706786150432508423167675012843431687520867201354350764281243876015
CF 2: 012345678127438506586102734405783162678510243731654820864021357350267481243876015
CF 3: 012345678127468503586102734405783162378510246731654820864021357650237481243876015
CF 4: 012345678124538706467281350831607524675012843708453162586120437350764281243876015
CF 5: 012345678123568704467281350841607523375012846708453162586120437650734281234876015
Ascending sorted vector of vertices powers:
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
Multiset of vertices powers:
{6:12}
213. Structure 12N36M6C
DLSs within combinatorial structure:
DLS 1: 012345678123574806467128350830657124675812043781403562506281437354760281248036715
DLS 2: 012345678280413567835067124467182350543670812628534701154706283706821435371258046
DLS 3: 012345678280413567835067124467132850548670312623584701154706283706821435371258046
DLS 4: 012345678280413567635807124467182350543076812826534701154760283708621435371258046
DLS 5: 012345678280413567835607124467182350543076812628534701154760283706821435371258046
...
DLS 8: 012345678123574806467180352835607124670218543781453260506821437354762081248036715
DLS 9: 012345678123574806467182350835607124670218543781453062506821437354760281248036715
DLS 10: 012345678153274806467182350835607124670518243781423065206851437324760581548036712
DLS 11: 012345678123574806467182350830657124675218043781403562506821437354760281248036715
DLS 12: 012345678123574806467128350835607124670812543781453062506281437354760281248036715
Adjacency matrix:
011111100000
100000011111
100000011111
100000011111
100000011111
100000011111
100000011111
011111100000
011111100000
011111100000
011111100000
011111100000
Different CFs set within combinatorial structure:
CF 1: 012345678123574806467128350830657124675812043781403562506281437354760281248036715
CF 2: 012345678123574806467128350835607124670812543781453062506281437354760281248036715
CF 3: 012345678123458706467281530781534062670812345358706124806123457534670281245067813
CF 4: 012345678123574806467182350835607124670218543781453062506821437354760281248036715
CF 5: 012345678123574806467182350830657124675218043781403562506821437354760281248036715
CF 6: 012345678123608745785160234340827561467531082274016853531782406856274310608453127
Ascending sorted vector of vertices powers:
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
Multiset of vertices powers:
{6:12}
214. Structure 13N13M13C
DLSs within combinatorial structure:
DLS 1: 012345678123780546587431062248567130765812403430256817806174325654023781371608254
DLS 2: 012345678835014762258106347407632581381470256726581034670258413543867120164723805
DLS 3: 012345678845017362258106437304672581481730256726581043630258714573864120167423805
DLS 4: 012345678875014362258106734304672581481730256726581043630258417543867120167423805
DLS 5: 012345678835014762258160347407632581381476250726581034670258413543807126164723805
...
DLS 9: 012345678523781046187430562248567130765812403431206857856074321604123785370658214
DLS 10: 012345678835014267758106342407632581321470856276581034680257413543768120164823705
DLS 11: 012345678235014867758106342407632581381470256876521034620857413543768120164283705
DLS 12: 012345678835014267758160342407632581321476850276581034680257413543708126164823705
DLS 13: 012345678235014867758160342407632581381476250876521034620857413543708126164283705
Adjacency matrix:
0111111000000
1000000100000
1000000000000
1000000010000
1000000100000
1000000000000
1000000000000
0100100001111
0001000000000
0000000100000
0000000100000
0000000100000
0000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678123780546587431062248567130765812403430256817806174325654023781371608254
CF 2: 012345678123786054765023481354870216607531842538164720486207135870412563241658307
CF 3: 012345678120678543538204716867432051453861207284157360675023184701586432346710825
CF 4: 012345678120486357853701426504867132765213840671024583386152704438570261247638015
CF 5: 012345678123657804476108352305864217684073521837521046751280463568412730240736185
...
CF 9: 012345678231568704504726183745812036826074351360481527183657240457130862678203415
CF 10: 012345678123486057765024381457830216604571832578163420386207145840712563231658704
CF 11: 012345678120478356645287031703652184236814705458763210574130862867021543381506427
CF 12: 012345678123486057765014382457830216604572831578163420386207145840721563231658704
CF 13: 012345678120478356645827031703652184836214705458763210574130862267081543381506427
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 6, 6]
Multiset of vertices powers:
{1:8, 2:3, 6:2}
215. Structure 13N20M13C
DLSs within combinatorial structure:
DLS 1: 012345678123478506687013254258637140801752463576104382734260815465821037340586721
DLS 2: 012345678734206815246581730870164352365820147458637021123478506601752483587013264
DLS 3: 012345678734206815246580731870164352365821047458637120123478506601752483587013264
DLS 4: 012345678123478506587013264268507143831762450670154382704236815456821037345680721
DLS 5: 012345678123478506687013254258607143831752460570164382704236815465821037346580721
...
DLS 9: 012345678734206815246580731860174352375821046458637120123468507601752483587013264
DLS 10: 012345678734206815246581730870164253365820147458637021123478506601753482587012364
DLS 11: 012345678734206815246580731870164253365821047458637120123478506601753482587012364
DLS 12: 012345678734206815246581730860174253375820146458637021123468507601753482587012364
DLS 13: 012345678734206815246580731860174253375821046458637120123468507601753482587012364
Adjacency matrix:
0110000000000
1001111000000
1001111000000
0110000000000
0110000110000
0110000001100
0110000111111
0000101000000
0000101000000
0000011000000
0000011000000
0000001000000
0000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678123478506687013254258637140801752463576104382734260815465821037340586721
CF 2: 012345678123478506647051382476582130738614025801736254354260817265803741580127463
CF 3: 012345678123487506647051382486572130350618427801736254734260815265803741578124063
CF 4: 012345678123478506587013264268507143831762450670154382704236815456821037345680721
CF 5: 012345678123478506651702483365821047408637125734256810246580731870164352587013264
...
CF 9: 012345678123487506647051382486572130350218467801736254734620815265803741578164023
CF 10: 012345678123487506647051382486572130350618427835706214704263851261830745578124063
CF 11: 012345678123487506647051382486572130350618427805736214734260851261803745578124063
CF 12: 012345678123487506647051382486572130350218467835706214704623851261830745578164023
CF 13: 012345678123487506647051382486572130350218467805736214734620851261803745578164023
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 5, 5, 8]
Multiset of vertices powers:
{1:2, 2:6, 4:2, 5:2, 8:1}
216. Structure 13N25M13C
DLSs within combinatorial structure:
DLS 1: 012345678123476850374680125687502413560831247241758306856014732708123564435267081
DLS 2: 012345678346758201208137564471263085735014826150486732567821340824670153683502417
DLS 3: 012345678345768201208137564471253086736014825150486732567821340824670153683502417
DLS 4: 012345678123476850734680125687502413260831547541728306856014732308157264475263081
DLS 5: 012345678123476850374680125687502413260831547541728306856014732708153264435267081
...
DLS 9: 012345678123406857734680125680572413567831240241758306856014732308127564475263081
DLS 10: 012345678123406857374680125680572413567831240241758306856014732708123564435267081
DLS 11: 012345678173406852734680125680527413267831540541278306856014237308152764425763081
DLS 12: 012345678345768201208137564471253086836014725150476832567821340724680153683502417
DLS 13: 012345678346758201208137564471263085835014726150476832567821340724680153683502417
Adjacency matrix:
0110000000000
1001111111000
1001111111100
0110000000011
0110000000000
0110000000011
0110000000011
0110000000000
0110000000011
0110000000000
0010000000000
0001011010000
0001011010000
Different CFs set within combinatorial structure:
CF 1: 012345678123476850374680125687502413560831247241758306856014732708123564435267081
CF 2: 012345678123478506647580231375164082854237160238706415701652843460821357586013724
CF 3: 012345678123478506847560231375184062654237180238706415701652843460821357586013724
CF 4: 012345678123087546486731025357802461560214837874653102245160783631478250708526314
CF 5: 012345678123476850374680125687502413260831547541728306856014732708153264435267081
...
CF 9: 012345678120476835356814720684730512847051263705283146231568407563127084478602351
CF 10: 012345678123056847807423561765810432548762103436201785681574320274138056350687214
CF 11: 012345678123507846486731025307852461860214537574683102245160783631478250758026314
CF 12: 012345678120487536765018423351862704834571062247136850486720315608253147573604281
CF 13: 012345678120487536765018423351862704834271065247136850486750312608523147573604281
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 9]
Multiset of vertices powers:
{1:1, 2:4, 4:6, 8:1, 9:1}
217. Structure 14N13M5C
DLSs within combinatorial structure:
DLS 1: 012345678123608754604581237275816043467132805356027481831274560548760312780453126
DLS 2: 012345678658427301847653120763102854201568437185734062374086215430271586526810743
DLS 3: 012345678345076812761582043870653421184720365523418706437261580256807134608134257
DLS 4: 012345678437856012508712436354680127670423581826571304143268750265107843781034265
DLS 5: 012345678231608754604581237175836042467213805356027481823174560548760123780452316
...
DLS 10: 012345678251786043408562137643250781164873205537614820785401362826037514370128456
DLS 11: 012345678451768032683520147324856701108473265567012384735681420846207513270134856
DLS 12: 012345678531768042687420153724836501408153267365012784153687420876204315240571836
DLS 13: 012345678157468032683720541724856103308571264465012387531687420846203715270134856
DLS 14: 012345678153768042687420531724856103408531267365012784531687420876204315240173856
Adjacency matrix:
01000000000000
10111111000000
01000000000000
01000000000000
01000000000000
01000000000000
01000000000000
01000000111111
00000001000000
00000001000000
00000001000000
00000001000000
00000001000000
00000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678123608754604581237275816043467132805356027481831274560548760312780453126
CF 2: 012345678231487065568021437487563201306178542843256710720834156654710823175602384
CF 3: 012345678123058746651784320835401267506872431748536102380627514467213085274160853
CF 4: 012345678124058736805634127458712063287160354761403582340276815673581240536827401
CF 5: 012345678123856704607428513836504127578630241485761032351287460764012385240173856
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7]
Multiset of vertices powers:
{1:12, 7:2}
218. Structure 14N16M10C
DLSs within combinatorial structure:
DLS 1: 012345678123478056847156230380527164274861503658034712701682345536210487465703821
DLS 2: 012345678438067512251783064763254801106472385540618237875136420624801753387520146
DLS 3: 012345678123678054847150236286537140374861502658024713701482365530216487465703821
DLS 4: 012345678823671054147850236286537140374168502658024713701482365530216487465703821
DLS 5: 012345678123478056847156230280537164374861502658024713701682345536210487465703821
...
DLS 10: 012345678823671054147850236386527140274168503658034712701482365530216487465703821
DLS 11: 012345678123678054847156230380527146274861503658034712701482365536210487465703821
DLS 12: 012345678823471056147856230380527164274168503658034712701682345536210487465703821
DLS 13: 012345678823671054147856230380527146274168503658034712701482365536210487465703821
DLS 14: 012345678438067512251783064763214805506472381140658237875136420624801753387520146
Adjacency matrix:
01000000000000
10111111111110
01000000000000
01000000000000
01000000000000
01000000000001
01000000000000
01000000000001
01000000000000
01000000000000
01000000000001
01000000000000
01000000000001
00000101001010
Different CFs set within combinatorial structure:
CF 1: 012345678123478056847156230380527164274861503658034712701682345536210487465703821
CF 2: 012345678123467850365781024786124305548073216457608132601532487834250761270816543
CF 3: 012345678123478056847156230280537164374861502658024713701682345536210487465703821
CF 4: 012345678120487563534762180867134205746853012381026754403571826675208431258610347
CF 5: 012345678123678054246750183501864237468531702834207561750183426375426810687012345
CF 6: 012345678120487563734562180865134207546873012381026754403751826657208431278610345
CF 7: 012345678123576840406281753857432061574813206348067512765108324230654187681720435
CF 8: 012345678123678054246750183561804237408531762834267501750183426375426810687012345
CF 9: 012345678124638705586107234407583162843276510738421056361850427250764381675012843
CF 10: 012345678120483765685017324476850231538274016803126457764532180357601842241768503
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 12]
Multiset of vertices powers:
{1:8, 2:4, 4:1, 12:1}
219. Structure 14N17M7C
DLSs within combinatorial structure:
DLS 1: 012345678120578346674021583863102754547836021435687210251463807308754162786210435
DLS 2: 012345678254103867543768012430687125678210543867452301185024736726531480301876254
DLS 3: 012345678120578346674021583863102754547836012435687120251463807308754261786210435
DLS 4: 012345678120587436678021543364102857543876012785634120251768304807453261436210785
DLS 5: 012345678120587436678021543367102854543876012785634120251468307804753261436210785
...
DLS 10: 012345678254103867543768012130687425678210543867452301485021736726534180301876254
DLS 11: 012345678254103867543768012130687425768210543876452301485021736627534180301876254
DLS 12: 012345678254103867543768012430687125768210543876452301185024736627531480301876254
DLS 13: 012345678245013867503768412431687520768250143876102354180524736627431085354876201
DLS 14: 012345678127508346674021583863172054540836712435687120251463807308754261786210435
Adjacency matrix:
01000000000000
10111110000000
01000001100000
01000000010000
01000000111110
01000000000000
01000000000100
00100000000001
00101000000001
00011000000000
00001000000000
00001010000000
00001000000000
00000001100000
Different CFs set within combinatorial structure:
CF 1: 012345678120578346674021583863102754547836021435687210251463807308754162786210435
CF 2: 012345678120568743357206184741823065683457201468031527836170452574612830205784316
CF 3: 012345678120578346674021583863102754547836012435687120251463807308754261786210435
CF 4: 012345678120487536476520183583172460347658012861703254734261805205836741658014327
CF 5: 012345678120568743374102586435687021658734210786021435501473862867210354243856107
CF 6: 012345678120568347465187023736802451658734102847621530201453786374210865583076214
CF 7: 012345678123568740357206184741850236680437521408621357865173402574012863236784015
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 6, 6]
Multiset of vertices powers:
{1:4, 2:6, 3:2, 6:2}
220. Structure 14N17M14C
DLSs within combinatorial structure:
DLS 1: 012345678123076845758463201265780134530612487801534762486257310674821053347108526
DLS 2: 012345678341728506637504182570832461285160743168453027803671254456287310724016835
DLS 3: 012345678754016832328761504265180743530672481807234165486527310641853027173408256
DLS 4: 012345678153076842728463501265780134530612487801234765486527310674851023347108256
DLS 5: 012345678754016832328761504265180743530872461607234185486527310841653027173408256
...
DLS 10: 012345678724016835358761204265180743530872461607534182486257310841623057173408526
DLS 11: 012345678123076845758463201265780134530812467601534782486257310874621053347108526
DLS 12: 012345678341728506437506182570832461285160743168453027803671254654287310726014835
DLS 13: 012345678348721506437506182570832461285160743861453027103678254654287310726014835
DLS 14: 012345678348721506637504182570832461285160743861453027103678254456287310724016835
Adjacency matrix:
01000000000000
10111111111000
01000000000000
01000000000000
01000000000111
01000000000000
01000000000000
01000000000000
01000000000100
01000000000111
01000000000000
00001000110000
00001000010000
00001000010000
Different CFs set within combinatorial structure:
CF 1: 012345678123076845758463201265780134530612487801534762486257310674821053347108526
CF 2: 012345678120478536473582160586107423734860251658024317865213704347651082201736845
CF 3: 012345678123476805687014352465837120508762413870153264734201586351628047246580731
CF 4: 012345678123467850786514302457830126508672413870153264634201587361028745245786031
CF 5: 012345678123476805687014352465837120501762483870153264734208516358621047246580731
...
CF 10: 012345678123476805687012354465837120501764283870153462734208516358621047246580731
CF 11: 012345678123076845758463201265780134530812467601534782486257310874621053347108526
CF 12: 012345678120478563476582130583107426764830251658024317835216704347651082201763845
CF 13: 012345678120567834458036127583602741846273015367421580735810462201784356674158203
CF 14: 012345678120478536658213704347682150734851062265107483586024317801736245473560821
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 10]
Multiset of vertices powers:
{1:7, 2:3, 3:1, 4:2, 10:1}
221. Structure 14N18M14C
DLSs within combinatorial structure:
DLS 1: 012345678123486750804561237486750123567134082375628401231807564648072315750213846
DLS 2: 012345678831204567756180423567831204420753816648072135183426750375618042204567381
DLS 3: 012345678831207564756180423564831207420753816648072135183426750375618042207564381
DLS 4: 012345678523486710804561237486710523167234085371658402235807164648072351750123846
DLS 5: 012345678123486750804561237486750123567234081375618402231807564648072315750123846
...
DLS 10: 012345678123486750804571236487650123576234081365718402231807564748062315650123847
DLS 11: 012345678153486720804271536487620153276534081365718402531807264748062315620153847
DLS 12: 012345678123486750804571236487650123576134082365728401231807564748062315650213847
DLS 13: 012345678123586740805471236487650123576234081364718502231807465758062314640123857
DLS 14: 012345678123586740805471236487650123576134082364728501231807465758062314640213857
Adjacency matrix:
01100000000000
10011111000000
10011111111111
01100000000000
01100000000000
01100000000000
01100000000000
01100000000000
00100000000000
00100000000000
00100000000000
00100000000000
00100000000000
00100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123486750804561237486750123567134082375628401231807564648072315750213846
CF 2: 012345678123486750564807231486750123270531864357618042831264507648072315705123486
CF 3: 012345678123586740608172534567431082481063257835207461750814326274650813346728105
CF 4: 012345678123076845875601234284760153601534782347158026536287410450812367768423501
CF 5: 012345678123486750804561237486750123567234081375618402231807564648072315750123846
...
CF 10: 012345678123486750684071235465720183576234801357618042231807564840562317708153426
CF 11: 012345678123407856476081235245760183681534702357128064834276510560812347708653421
CF 12: 012345678123486750684071235465720183570234861357618042231867504846502317708153426
CF 13: 012345678123476850674081235465720183586234701357618042231807564840562317708153426
CF 14: 012345678123476850674081235465720183580234761357618042231867504846502317708153426
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 6, 12]
Multiset of vertices powers:
{1:6, 2:6, 6:1, 12:1}
222. Structure 14N20M12C
DLSs within combinatorial structure:
DLS 1: 012345678123076845568134702874501326705863214481257063230618457657482130346720581
DLS 2: 012345678235418067471683520620874153356720481547136802863502714108257346784061235
DLS 3: 012345678123076845568134702847501326705863214481257063230618457654782130376420581
DLS 4: 012345678123076854568134702857401326704863215481257063230618547645782130376520481
DLS 5: 012345678123076854568137402854701326407863215781254063230618547675482130346520781
...
DLS 10: 012345678235618047671483520420876153356720481567134802843502716108257364784061235
DLS 11: 012345678238617540681473025427586103356720481860134752743052816175208364504861237
DLS 12: 012345678238417560481673025627584103356720481840136752763052814175208346504861237
DLS 13: 012345678123876054568134702875401326784063215401257863230618547647582130356720481
DLS 14: 012345678143876052568132704875201346784063215201457863430618527627584130356720481
Adjacency matrix:
01000000000000
10111111100000
01000000000000
01000000010000
01000000000000
01000000011100
01000000000000
01000000010000
01000000011100
00010101100000
00000100100011
00000100100011
00000000001100
00000000001100
Different CFs set within combinatorial structure:
CF 1: 012345678123076845568134702874501326705863214481257063230618457657482130346720581
CF 2: 012345678123760854386514207467851320245076183758423061570182436834607512601238745
CF 3: 012345678123076845568134702847501326705863214481257063230618457654782130376420581
CF 4: 012345678123076854568134702857401326704863215481257063230618547645782130376520481
CF 5: 012345678123076854457823160681534702245760381306218547570182436834607215768451023
...
CF 8: 012345678123706854386514207467851320245670183758423061570182436834067512601238745
CF 9: 012345678123856704356701482570482163287130546804567231641023857465278310738614025
CF 10: 012345678123876504356701482570482163285130746804567231641023857467258310738614025
CF 11: 012345678123658704756803421648517230287031546370284165401726853865470312534162087
CF 12: 012345678123678504756803421648517230285031746370284165401726853867450312534162087
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 8]
Multiset of vertices powers:
{1:4, 2:4, 4:5, 8:1}
223. Structure 14N20M14C
DLSs within combinatorial structure:
DLS 1: 012345678120576843758024136583462017467138250346781502835610724204857361671203485
DLS 2: 012345678831250764346781502605837421274613085758024136563178240127406853480562317
DLS 3: 012345678871250364346781502605873421234617085758024136567138240123406857480562713
DLS 4: 012345678831250764346701582605837421274613805758024136563178240127486053480562317
DLS 5: 012345678871250364346701582605873421234617805758024136567138240123486057480562713
...
DLS 10: 012345678721508364346871520685723401234610785807254136560132847173486052458067213
DLS 11: 012345678821507364346871520685723401234610785708254136560132847173486052457068213
DLS 12: 012345678721058364346871520685723401234610785857204136560132847173486052408567213
DLS 13: 012345678821057364346871520685723401234610785758204136560132847173486052407568213
DLS 14: 012345678180476523754082136823564017567138240346721805235610784408257361671803452
Adjacency matrix:
01111000000000
10000111100000
10000111100000
10000000100000
10000000100000
01100000011110
01100000000000
01100000000000
01111000000000
00000100000000
00000100000000
00000100000001
00000100000001
00000000000110
Different CFs set within combinatorial structure:
CF 1: 012345678120576843758024136583462017467138250346781502835610724204857361671203485
CF 2: 012345678124087536457268013530672184673851402286413750341706825865120347708534261
CF 3: 012345678230486715625071384463750821578164203147208536384527160851632047706813452
CF 4: 012345678126087534457268013530472186673851402284613750361704825845120367708536241
CF 5: 012345678230586714624071385463750821578164203157208436385427160841632057706813542
...
CF 10: 012345678230681754548762130781456023607823415154037286863210547375104862426578301
CF 11: 012345678230681754548762103781456320607823415154037286863210547375104862426578031
CF 12: 012345678230674851768512430584106723607823145451037286843260517375481062126758304
CF 13: 012345678230674815768152430184506723607823541451037286843260157375481062526718304
CF 14: 012345678123478560365821047651702483408537126240186735734260851876054312587613204
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 4, 5, 5, 6]
Multiset of vertices powers:
{1:2, 2:7, 4:2, 5:2, 6:1}
224. Structure 14N22M6C
DLSs within combinatorial structure:
DLS 1: 012345678124678530385012746867451203253760481471283065630127854748506312506834127
DLS 2: 012345678341082765258761034785604321634128507820537416503876142476213850167450283
DLS 3: 012345678371082456258761034486507321634128705820436517703854162567213840145670283
DLS 4: 012345678840132765258761034735614820604823517123507486581076342476280153367458201
DLS 5: 012345678870132456258761034436517820604823715123406587781054362567280143345678201
...
DLS 10: 012345678124658037307812546568471203273560481451283760630127854845706312786034125
DLS 11: 012345678238670145571834206764251830850762413483517062647083521105426387326108754
DLS 12: 012345678451607823823510746260783514387062451738154260674238105105426387546871032
DLS 13: 012345678123576840534012786347681205285730461471268053860127534756804312608453127
DLS 14: 012345678436208517167834250328470165271056483504681732653127804845763021780512346
Adjacency matrix:
01111000000000
10000111110000
10000001111000
10000001110100
10000001110011
01000000000000
01000000000000
01111000000000
01111000000000
01111000000000
00100000000000
00010000000000
00001000000000
00001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678124678530385012746867451203253760481471283065630127854748506312506834127
CF 2: 012345678120438756567801423875623104348510267651784032786152340403276581234067815
CF 3: 012345678120768453384521760758603142645812037831457206576180324403276581267034815
CF 4: 012345678120486753487501236245673180356214807561738024874150362703862541638027415
CF 5: 012345678123864057835107264340671582706432815467058123284510736571286340658723401
CF 6: 012345678124568730307182564871654302645817023456203187230471856568730241783026415
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 6, 6]
Multiset of vertices powers:
{1:6, 4:4, 5:2, 6:2}
225. Structure 14N22M7C
DLSs within combinatorial structure:
DLS 1: 012345678124038765658174032781652304345716820836407251463820517270583146507261483
DLS 2: 012345678673581240735862104304216587168430752421078365587603421856724013240157836
DLS 3: 012345678653781042537860124304216587168437205471528360280673451826054713745102836
DLS 4: 012345678873564210735682401304216587186430752628071345547103826451728063260857134
DLS 5: 012345678853764012537680421304216587186437205678521340240173856421058763765802134
...
DLS 10: 012345678458716032321058746785402361504163827863527410630871254247630185176284503
DLS 11: 012345678248107536326874150183762045764053821501428763450216387875630214637581402
DLS 12: 012345678648701532103286457467830125834057261570162843256413780325678014781524306
DLS 13: 012345678381576204157280436235407861804763152768152340643021587420638715576814023
DLS 14: 012345678846503217103267584485632701251876340738421056670154832567018423324780165
Adjacency matrix:
01111000000000
10000111110000
10000101100000
10000101101000
10000101100000
01111000000100
01000000000000
01111000000011
01111000000000
01000000000000
00010000000000
00000100000000
00000001000000
00000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678124038765658174032781652304345716820836407251463820517270583146507261483
CF 2: 012345678124038765587160324671584230348617502856723041765802413403256187230471856
CF 3: 012345678123870564367028415405632187748516320856704231270153846631487052584261703
CF 4: 012345678124038765567180423871563240346817502453726081735402816608254137280671354
CF 5: 012345678123508467487620351856471032671054823548763210764832105305216784230187546
CF 6: 012345678123478065567124380671850234836012547458763102785601423340286751204537816
CF 7: 012345678120463857567180423781532064834617205658704132276851340403276581345028716
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 6, 6]
Multiset of vertices powers:
{1:6, 4:4, 5:2, 6:2}
226. Structure 14N22M7C
DLSs within combinatorial structure:
DLS 1: 012345678120678345648157032356402817475031286807516423531820764263784150784263501
DLS 2: 012345678581432067754206381168724530843650712675183204427068153306871425230517846
DLS 3: 012345678285706431357068124134627085760854312543271806876413250608132547421580763
DLS 4: 012345678167538240524801763405782136346210857871063425783126504250674381638457012
DLS 5: 012345678176583240524601387405872163843210756781036425367128504250764831638457012
...
DLS 10: 012345678245701836357086421638127045780654312563278104876413250401832567124560783
DLS 11: 012345678628451037381760524837614250456178302504283761240537816765802143173026485
DLS 12: 012345678780461352876514230324156087258637401645702813531820764103278546467083125
DLS 13: 012345678648253017461720385537806124803571462385062741124687503756418230270134856
DLS 14: 012345678531708462856137240204871536640253187725064813183620754378416025467582301
Adjacency matrix:
01100000000000
10000000000000
10011110000000
00100001110000
00100001111000
00100001110000
00100001110100
00011110000010
00011110000000
00011110000000
00001000000001
00000010000000
00000001000000
00000000001000
Different CFs set within combinatorial structure:
CF 1: 012345678120678345648157032356402817475031286807516423531820764263784150784263501
CF 2: 012345678124587306503618427860753214375862041738104562487236150651420783246071835
CF 3: 012345678120438756657184023871563240346817502403256187234071865568720431785602314
CF 4: 012345678124038765567180423871563240346812507408756132780421356653274081235607814
CF 5: 012345678123856704407681325638407152546218037871563240784120563365072481250734816
CF 6: 012345678123856704876531240250784136547013862401678325365102487638427051784260513
CF 7: 012345678123470856648051723876523140357814062781236504230167485564708231405682317
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5]
Multiset of vertices powers:
{1:4, 2:2, 4:4, 5:4}
227. Structure 14N22M14C
DLSs within combinatorial structure:
DLS 1: 012345678123470865376014582768501324485136207541728036654283710807652143230867451
DLS 2: 012345678840652731468531207254760813736214580387406152105827364571083426623178045
DLS 3: 012345678123870465374086512786504321645138207568721034851263740407652183230417856
DLS 4: 012345678360428751648701325873250416237516840405637182184072563521864037756183204
DLS 5: 012345678840562731458631207264750813736214580387406152105827364571083426623178045
...
DLS 10: 012345678840652731468531207254760813736214580307486152185027364571803426623178045
DLS 11: 012345678173820465324586710586274301645138027768051234801763542457602183230417856
DLS 12: 012345678123870465374086512786524301645138027568701234851263740407652183230417856
DLS 13: 012345678123850467374086512786524301647138025568701234851263740405672183230417856
DLS 14: 012345678123850467374086512786504321647138205568721034851263740405672183230417856
Adjacency matrix:
01000000000000
10100000000000
01011111110000
00100000000000
00100000000000
00100000001111
00100000000111
00100000000111
00100000000111
00100000000000
00000100000000
00000111100000
00000111100000
00000111100000
Different CFs set within combinatorial structure:
CF 1: 012345678123470865376014582768501324485136207541728036654283710807652143230867451
CF 2: 012345678123078546465107382756820431348761025630214857281653704874536210507482163
CF 3: 012345678120453867248167053536701284687534102853216740705682431374028516461870325
CF 4: 012345678123708564546087213784523106831276450605134782370612845258461037467850321
CF 5: 012345678124087563536708214781523406843672150607154382370216845258461037465830721
...
CF 10: 012345678230758416385162704107486352761820543648071235573604821854237160426513087
CF 11: 012345678123478065408167253560713842634852710357086124271530486846201537785624301
CF 12: 012345678120453867248761053853612740607534182486107235734286501375028416561870324
CF 13: 012345678120453867248761053853672140601534782486107235734286501375028416567810324
CF 14: 012345678120453867248167053536781204607534182853216740785602431374028516461870325
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 5, 8]
Multiset of vertices powers:
{1:5, 2:1, 4:6, 5:1, 8:1}
228. Structure 14N22M14C
DLSs within combinatorial structure:
DLS 1: 012345678123067854786152340351870426635418207807624513564203781470586132248731065
DLS 2: 012345678456780312864021753507264831248137065183576420370852146721603584635418207
DLS 3: 012345678456870312864021753507264831248137065173586420380752146721603584635418207
DLS 4: 012345678724061853186752430451870326635418207807623514563204781370586142248137065
DLS 5: 012345678124067853786152430451870326635418207807623514563204781370586142248731065
...
DLS 10: 012345678156870342861024753507261834248137065473586120380752416724603581635418207
DLS 11: 012345678156780342801624753567201834248137065483576120370852416724063581635418207
DLS 12: 012345678156870342801624753567201834248137065473586120380752416724063581635418207
DLS 13: 012345678156780342801624753567201834248037165483576021370852416724163580635418207
DLS 14: 012345678156870342801624753567201834248037165473586021380752416724163580635418207
Adjacency matrix:
01100000000000
10011100000000
10011100000000
01100011111111
01100000000000
01100011111100
00010100000000
00010100000000
00010100000000
00010100000000
00010100000000
00010100000000
00010000000000
00010000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123067854786152340351870426635418207807624513564203781470586132248731065
CF 2: 012345678123408765365827401784150236647531082850276314401762853278613540536084127
CF 3: 012345678123508764365827401784150236657431082840276315401762853278613540536084127
CF 4: 012345678230761854481036725867513042743628510358407261526180437605274183174852306
CF 5: 012345678123856704864037215708564132570612843356708421245170386437281560681423057
...
CF 10: 012345678120568743354710286835607124678234501487051362201476835763182450546823017
CF 11: 012345678120478536608732145754160823347651082865203714536827401271584360483016257
CF 12: 012345678120576843475681230804137526347860152683024715251708364736452081568213407
CF 13: 012345678120478536608732145457160823374651082865203417536824701241587360783016254
CF 14: 012345678120576843475680231804137526347861052683024715251708364736452180568213407
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 8, 10]
Multiset of vertices powers:
{1:2, 2:8, 4:2, 8:1, 10:1}
229. Structure 14N24M14C
DLSs within combinatorial structure:
DLS 1: 012345678123457806751806423487632150346578012260184537805721364534260781678013245
DLS 2: 012345678651208437328761504805427361570813246437056182184632750763184025246570813
DLS 3: 012345678651208734328461507805724361570813246734056182187632450463187025246570813
DLS 4: 012345678123457806751086423487632150346578012268104537805721364534260781670813245
DLS 5: 012345678168437520701582463427853106345670812286104357530761284854026731673218045
...
DLS 10: 012345678468137520704682153127853406346570812285401367530764281851026734673218045
DLS 11: 012345678531208467268731504806457231670812345457026183184563720723184056345670812
DLS 12: 012345678531208764268431507806754231670812345754026183187563420423187056345670812
DLS 13: 012345678123467805751086423487532160345678012268104537806721354634250781570813246
DLS 14: 012345678423167805754086123187532460345678012268401537806724351631250784570813246
Adjacency matrix:
01100000000000
10011111110000
10011111110000
01100000001100
01100000000000
01100000000000
01100000000000
01100000001100
01100000000000
01100000000000
00010001000011
00010001000011
00000000001100
00000000001100
Different CFs set within combinatorial structure:
CF 1: 012345678123457806751806423487632150346578012260184537805721364534260781678013245
CF 2: 012345678123784065308167524865421307540873216481056732754632180637208451276510843
CF 3: 012345678123486750568723104781564032640872315457031286306158427834207561275610843
CF 4: 012345678123457806751086423487632150346578012268104537805721364534260781670813245
CF 5: 012345678123068745348621507257106384876534210465287031531870462604712853780453126
...
CF 10: 012345678120483756801536247275860431538672014756124380463718502347201865684057123
CF 11: 012345678123478506438507162604783251267051384370216845586120437845632710751864023
CF 12: 012345678124708563856127034740861325583072146608453217375216480431680752267534801
CF 13: 012345678123467805751086423487532160345678012268104537806721354634250781570813246
CF 14: 012345678123784560508167324487630152340578216635421087761852403854206731276013845
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8]
Multiset of vertices powers:
{2:8, 4:4, 8:2}
230. Structure 14N24M14C
DLSs within combinatorial structure:
DLS 1: 012345678123087546435618027248751360704863215681204753567132804850476132376520481
DLS 2: 012345678431652807127804356870436512356720481563178024605287143248513760784061235
DLS 3: 012345678631452807127806354870634512356720481543178026405287163268513740784061235
DLS 4: 012345678143807526235618047428751360784063215601482753567134802850276134376520481
DLS 5: 012345678143087526235618047428751360704863215681402753567134802850276134376520481
...
DLS 10: 012345678631482750128576304507634812356720481843107526470258163265813047784061235
DLS 11: 012345678721803546457638021248157360584061237603284715365712804830476152176520483
DLS 12: 012345678741803526257638041428157360584061237603482715365714802830276154176520483
DLS 13: 012345678123807546437618025248571360584063217601284753765132804870456132356720481
DLS 14: 012345678143807526237618045428571360584063217601482753765134802870256134356720481
Adjacency matrix:
01100000000000
10011100000000
10011100000000
01100011110000
01100000000000
01100011110000
00010100001100
00010100001100
00010100000011
00010100000011
00000011000000
00000011000000
00000000110000
00000000110000
Different CFs set within combinatorial structure:
CF 1: 012345678123087546435618027248751360704863215681204753567132804850476132376520481
CF 2: 012345678120687435485731026301862754543076812836154207764523180257408361678210543
CF 3: 012345678124657803837201564681524037560732481453168720706483152378016245245870316
CF 4: 012345678123487560486750132761824305548073216307561824650132487834206751275618043
CF 5: 012345678123487560486750132761834205548072316307561824650123487834206751275618043
...
CF 10: 012345678123764805851607234280436157346578012465183720704821563637250481578012346
CF 11: 012345678123486750485761032568124307640873215307658124751032486834207561276510843
CF 12: 012345678123487065408756132751624380540873216387061524865132407634208751276510843
CF 13: 012345678123480765408761532856124307540873216387056124761532480634207851275618043
CF 14: 012345678123487560406758132761824305548073216387561024650132487834206751275610843
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6]
Multiset of vertices powers:
{2:6, 4:6, 6:2}
231. Structure 14N24M14C
DLSs within combinatorial structure:
DLS 1: 012345678120487356785236014638102745574063281803714562461570823247658130356821407
DLS 2: 012345678651832047468710325325471806706528413247683150180256734873104562534067281
DLS 3: 012345678451832067648710325325671804706528413267483150180254736873106542534067281
DLS 4: 012345678345271806187406532651834027574063281830152764263780145428617350706528413
DLS 5: 012345678345271806587406132651834027174063285830512764263780541428657310706128453
...
DLS 10: 012345678325471806187206534651832047574063281830154762463780125248617350706528413
DLS 11: 012345678325471806587206134651832047174063285830514762463780521248657310706128453
DLS 12: 012345678120483756785236014678102345534067281803714562461570823247658130356821407
DLS 13: 012345678825471306173206584651832740584760231730154862467083125248617053306528417
DLS 14: 012345678825471306573206184651832740184760235730514862467083521248657013306128457
Adjacency matrix:
01100000000000
10011111111111
10011111111111
01100000000000
01100000000000
01100000000000
01100000000000
01100000000000
01100000000000
01100000000000
01100000000000
01100000000000
01100000000000
01100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120487356785236014638102745574063281803714562461570823247658130356821407
CF 2: 012345678124586730785631042673804521246170853407263185351028467860752314538417206
CF 3: 012345678124076835837521460681452307548760213406183752370218546253607184765834021
CF 4: 012345678230768541486051327548170263175823406327684150861502734653417082704236815
CF 5: 012345678234708561786253140508162437653870214861534702470621853145087326327416085
...
CF 10: 012345678230718546486051327548170263675823401327684150861502734153467082704236815
CF 11: 012345678234678105568120347683701524170453286457286031826017453345862710701534862
CF 12: 012345678120483756785236014678102345534067281803714562461570823247658130356821407
CF 13: 012345678128576403453160287576804312284753061847621530361082754630217845705438126
CF 14: 012345678124708365531280746406871532670534281753026814385167420847612053268453107
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 12, 12]
Multiset of vertices powers:
{2:12, 12:2}
232. Structure 14N27M14C
DLSs within combinatorial structure:
DLS 1: 012345678128607345673584021481763502235410867746258130857026413360871254504132786
DLS 2: 012345678783264501106758432628507314540132786374681025461873250857026143235410867
DLS 3: 012345678783261504406758132628507341540132786371684025164873250857026413235410867
DLS 4: 012345678784263501106758432628507314540132786473681025361874250857026143235410867
DLS 5: 012345678781263504406758132628507341540132786173684025364871250857026413235410867
...
DLS 10: 012345678128607435674583021380764512235410867706258143857126304463871250541032786
DLS 11: 012345678128670345673584021481763502235417860706258134857026413364801257540132786
DLS 12: 012345678128670435674583021381764502235417860706258143857026314463801257540132786
DLS 13: 012345678128670345673584021480763512235417860706258134857126403364801257541032786
DLS 14: 012345678128670435674583021380764512235417860706258143857126304463801257541032786
Adjacency matrix:
01111100000000
10000011000000
10000011110000
10000011001100
10000011111111
10000010101010
01111100000000
01111000000000
00101100000000
00101000000000
00011100000000
00011000000000
00001100000000
00001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678128607345673584021481763502235410867746258130857026413360871254504132786
CF 2: 012345678123487560608752431375610842540873216487561023761024385834206157256138704
CF 3: 012345678123807546756138024570482163647053281804761352431276805268514730385620417
CF 4: 012345678120487563263701485685170324874653102457268031341826750536012847708534216
CF 5: 012345678123758046845107362760831254374560821631274580257486103408612735586023417
...
CF 10: 012345678123486057476520183780153426648072315357618240864237501501864732235701864
CF 11: 012345678123486750365718042501864237648072315784103526476520183830257461257631804
CF 12: 012345678120487563683721405265170384874653120347268051451806732536012847708534216
CF 13: 012345678123486750365718042507864231648072315784103526476520183830251467251637804
CF 14: 012345678123486057476520183780163425548072316357618240864237501601854732235701864
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 9]
Multiset of vertices powers:
{1:1, 2:3, 3:3, 4:1, 5:5, 9:1}
233. Structure 14N28M12C
DLSs within combinatorial structure:
DLS 1: 012345678124538706678210543765403812350764281806157324437682150541826037283071465
DLS 2: 012345678746053812501826437687530241238471065473682150865107324120764583354218706
DLS 3: 012345678746053812501826437637580241283471065478632150865107324120764583354218706
DLS 4: 012345678743056812501823467637580241286471035478632150865107324120764583354218706
DLS 5: 012345678746023815201856437687530241538471062473682150865107324120764583354218706
...
DLS 10: 012345678743826015281053467637580241506471832478632150865107324120764583354218706
DLS 11: 012345678746823015281056437637580241503471862478632150865107324120764583354218706
DLS 12: 012345678324518706678230541765403812150764283806157324437682150541826037283071465
DLS 13: 012345678324518706678230541760453812105764283856107324437682150541826037283071465
DLS 14: 012345678124538706678210543760453812305764281856107324437682150541826037283071465
Adjacency matrix:
01111111111000
10000000000111
10000000000111
10000000000100
10000000000111
10000000000111
10000000000100
10000000000100
10000000000100
10000000000100
10000000000100
01111111111000
01101100000000
01101100000000
Different CFs set within combinatorial structure:
CF 1: 012345678124538706678210543765403812350764281806157324437682150541826037283071465
CF 2: 012345678123480756645078312468752130276813045387604521534261807801537264750126483
CF 3: 012345678123780456645078312768452130276813045384607521537261804801534267450126783
CF 4: 012345678123780456465078312748652130274813065386407521537261804801536247650124783
CF 5: 012345678120486753378612045687153420546078312735264801201837564864501237453720186
...
CF 8: 012345678123780456465028317748652130274813065386407521537261804801536742650174283
CF 9: 012345678120487365435768021263874510874536102687201453501623784356012847748150236
CF 10: 012345678128403765346872510687524301875016243460738152753180426501267834234651087
CF 11: 012345678128507463546278310760854132873610245684723501435081726301462857257136084
CF 12: 012345678124538706678210543760453812305764281856107324437682150541826037283071465
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 10, 10]
Multiset of vertices powers:
{2:6, 4:6, 10:2}
234. Structure 14N28M13C
DLSs within combinatorial structure:
DLS 1: 012345678123704865781653204406521387648270513567438120830167452254086731375812046
DLS 2: 012345678534268107806721453681453720375812046123507864457086231760134582248670315
DLS 3: 012345678537268104806421753681753420375812046123504867754086231460137582248670315
DLS 4: 012345678234568107806721453681453720375812046153207864427086531760134285548670312
DLS 5: 012345678237568104806421753681753420375812046153204867724086531460137285548670312
...
DLS 10: 012345678486731025764082531135204867548670312327156480853427106201863754670518243
DLS 11: 012345678537268104806421753681753420325817046173504862754086231460132587248670315
DLS 12: 012345678735268104806421753681753420357812046123504867574086231460137582248670315
DLS 13: 012345678254683107583761420801436752670218543168527034437850261726104385345072816
DLS 14: 012345678257683104583461720801736452670218543168524037734850261426107385345072816
Adjacency matrix:
01111000000000
10000111000000
10000111000000
10000111110000
10000111110000
01111000001100
01111000001100
01111000000000
00011000000011
00011000000011
00000110000000
00000110000000
00000000110000
00000000110000
Different CFs set within combinatorial structure:
CF 1: 012345678123704865781653204406521387648270513567438120830167452254086731375812046
CF 2: 012345678127456803608173542783564120546037281834621057451208736370812465265780314
CF 3: 012345678123857046854602137471580362547063821386271450265138704630714285708426513
CF 4: 012345678126457803708163542683574120547036281834621057451208736370812465265780314
CF 5: 012345678123857046854672130471580362540763821386201457265138704637014285708426513
...
CF 9: 012345678123607854268574103437182065504768231685413720740836512871250346356021487
CF 10: 012345678123708564587426013465872301206137845834561720371650482640283157758014236
CF 11: 012345678123807546804652137471580362547063821386271450265138704630714285758426013
CF 12: 012345678123754806865172340746801253508463721481537062354620187670218435237086514
CF 13: 012345678124068735368107452537480126843576210406251387781623504250734861675812043
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{2:4, 4:6, 6:4}
235. Structure 14N32M14C
DLSs within combinatorial structure:
DLS 1: 012345678231457860374860251405683127628714503867502314150238746543176082786021435
DLS 2: 012345678860532714583671042127804356241056837435287160706123485678410523354768201
DLS 3: 012345678860532714583471062127804356241056837635287140706123485478610523354768201
DLS 4: 012345678860532714583621047127804356741056832435287160206173485678410523354768201
DLS 5: 012345678860532714583421067127804356741056832635287140206173485478610523354768201
...
DLS 10: 012345678231457860674830251405683127328714506867502314150268743543176082786021435
DLS 11: 012345678431257860374860251205683147628714503867502314150438726543176082786021435
DLS 12: 012345678431257860674830251205683147328714506867502314150468723543176082786021435
DLS 13: 012345678231487560674830251408653127325714806867502314150268743543176082786021435
DLS 14: 012345678231487560374860251408653127625714803867502314150238746543176082786021435
Adjacency matrix:
01111111100000
10000000011100
10000000011100
10000000011100
10000000011100
10000000010011
10000000010011
10000000010011
10000000010011
01111111100000
01111000000000
01111000000000
00000111100000
00000111100000
Different CFs set within combinatorial structure:
CF 1: 012345678231457860374860251405683127628714503867502314150238746543176082786021435
CF 2: 012345678235087461781564230628453107346870512803126754570612843154708326467231085
CF 3: 012345678231857064684012357875604123158470236367128405740263581423586710506731842
CF 4: 012345678231486750527618034865107342784560213350274186403752861648031527176823405
CF 5: 012345678231857064184062357875604123658470231367128405740213586423586710506731842
...
CF 10: 012345678230816745346782150725160834167453082451278306583027461874601523608534217
CF 11: 012345678231674805875201364108432756354760281763158042427586130640817523586023417
CF 12: 012345678230816745347682150625170834176453082451268307583027461864701523708534216
CF 13: 012345678120486735835627104784162350648573012273018546506831427357204861461750283
CF 14: 012345678123684750408156237684730512247568103375421086851207364536072841760813425
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8]
Multiset of vertices powers:
{4:12, 8:2}
236. Structure 15N26M15C
DLSs within combinatorial structure:
DLS 1: 012345678123478506486527130570182463267031854358614027805263741641750382734806215
DLS 2: 012345678735260841864703215201836754528674103647051382473182560356418027180527436
DLS 3: 012345678731260845864703251205836714528674103647051382473182560356418027180527436
DLS 4: 012345678123487506476528130580172463267031854358614027805263741641750382734806215
DLS 5: 012345678123578406586427130470182563267031854358614027805263741641750382734806215
...
DLS 11: 012345678153782406746258130480127563865031247378614025204863751621570384537406812
DLS 12: 012345678735260841864713205201836754528674013647051382473182560356408127180527436
DLS 13: 012345678745261830861734205234806751528670314607453182470182563356018427183527046
DLS 14: 012345678745263810863714205234806751528670134607451382470182563156038427381527046
DLS 15: 012345678153482706476258130780124563865031247348617025207863451621570384534706812
Adjacency matrix:
011000000000000
100111111110000
100111111110000
011000000000000
011000000000000
011000000000000
011000000001000
011000000001000
011000000001000
011000000001000
011000000000110
000000111100000
000000000010001
000000000010001
000000000000110
Different CFs set within combinatorial structure:
CF 1: 012345678123478506486527130570182463267031854358614027805263741641750382734806215
CF 2: 012345678123587064658410327507631482274058136361274805430826751845763210786102543
CF 3: 012345678123608547356827014540782163785130426268514730431276805874061352607453281
CF 4: 012345678120457863536802147874163502483671025657028431705284316348716250261530784
CF 5: 012345678123578406586427130470182563267031854358614027805263741641750382734806215
...
CF 11: 012345678123658704675810432758421360804163257346507821587032146431276085260784513
CF 12: 012345678123680547356827014584702163705138426268514730431276805870461352647053281
CF 13: 012345678123658047386027514874502163758130426260714835431286750507461382645873201
CF 14: 012345678123658047386027514874502163758130426265714830431286705507461382640873251
CF 15: 012345678123658704675810432758431260804162357346507821587023146431276085260784513
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 9, 9]
Multiset of vertices powers:
{2:7, 3:4, 4:2, 9:2}
237. Structure 16N16M5C
DLSs within combinatorial structure:
DLS 1: 012345678120486357436710285247851063508234716351067824674108532863572140785623401
DLS 2: 012345678263578410307281564475103826754826103826754031180462357541630782638017245
DLS 3: 012345678286537410703861524425103786354678102867254031130486257541720863678012345
DLS 4: 012345678653714802328051467805432716260178345487506231746823150531687024174260583
DLS 5: 012345678654017832328651407865702314273168045780534261437826150501483726146270583
...
DLS 12: 012345678673184502381072465805437126560821347428506731746253810237618054154760283
DLS 13: 012345678346052817401267385683510742268473501137628450854701263725186034570834126
DLS 14: 012345678136052847204763185687510324368427501721638450853104762475286013540871236
DLS 15: 012345678130652847804723156267510384328467501751238460683104725475086213546871032
DLS 16: 012345678140752863806127354231560487728413506653278140384601725475086231567834012
Adjacency matrix:
0111100000000000
1000010000000000
1000001100000000
1000010000000000
1000000011000000
0101000000110000
0010000000000000
0010000000000000
0000100000000000
0000100000000000
0000010000001100
0000010000000011
0000000000100000
0000000000100000
0000000000010000
0000000000010000
Different CFs set within combinatorial structure:
CF 1: 012345678120486357436710285247851063508234716351067824674108532863572140785623401
CF 2: 012345678231670845876032154128506437704823516685714320540281763453167082367458201
CF 3: 012345678230857146864021537723580461608714325157236804486102753571463280345678012
CF 4: 012345678123407865268531704487653120356710482731284056670128543845076231504862317
CF 5: 012345678120568347586712034307451286254836701861207453735124860473680512648073125
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4]
Multiset of vertices powers:
{1:8, 2:2, 3:4, 4:2}
238. Structure 16N19M16C
DLSs within combinatorial structure:
DLS 1: 012345678123768540384026715761502834248631057450187362876450123605273481537814206
DLS 2: 012345678876130452538407261405273186627814503381056724254768310163582047740621835
DLS 3: 012345678423768510381026745764582031240631857158407362876150423605273184537814206
DLS 4: 012345678423786510361028745784562031240631857158407362876150423605273184537814206
DLS 5: 012345678123768540384026715761582034240631857458107362876450123605273481537814206
...
DLS 12: 012345678324768510481026735763502841248631057150487362876150423605273184537814206
DLS 13: 012345678321768540184026735763502814248631057450187362876450123605273481537814206
DLS 14: 012345678876130452538407261407253186625814703381076524254768310163582047740621835
DLS 15: 012345678876130452538407261407253816625814703381076524254761380163582047740628135
DLS 16: 012345678876130452538407261405273816627814503381056724254761380163582047740628135
Adjacency matrix:
0100000000000000
1011111111111000
0100000000000000
0100000000000000
0100000000000000
0100000000000000
0100000000000111
0100000000000001
0100000000000100
0100000000000000
0100000000000000
0100000000000100
0100000000000100
0000001010011000
0000001000000000
0000001100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123768540384026715761502834248631057450187362876450123605273481537814206
CF 2: 012345678123708546765831024601482753584063217248157360437216805850674132376520481
CF 3: 012345678230814756546782103425173860107426385761058234384607521873561042658230417
CF 4: 012345678127508364368724105784130256640251783835476012503867421471682530256013847
CF 5: 012345678123768540384026715761582034240631857458107362876450123605273481537814206
...
CF 12: 012345678230186745465728301671830524358471062784562130806213457527604813143057286
CF 13: 012345678123864750456702183870153426648270315735618042384027561501486237267531804
CF 14: 012345678123786054756420183561807432204531867837264501480153726345678210678012345
CF 15: 012345678123786054756420183561807432204531867387264501430158726845673210678012345
CF 16: 012345678123708546756831024501482763684053217248167350437216805860574132375620481
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 12]
Multiset of vertices powers:
{1:8, 2:5, 4:2, 12:1}
239. Structure 16N20M4C
DLSs within combinatorial structure:
DLS 1: 012345678120487356837521064654173820378064512465238701201756483546802137783610245
DLS 2: 012345678837156420654087312378621054201573846783402165120864537465710283546238701
DLS 3: 012345678873156420654083712738621054201537846387402165120864537465710283546278301
DLS 4: 012345678128407356837521064654173820370864512465238701201756483546082137783610245
DLS 5: 012345678128607354837521046654173820370864512465238701201756483546082137783410265
...
DLS 12: 012345678238756410654078321341607852187523046703481265870162534465210783526834107
DLS 13: 012345678238756410654078321341687052107523846783401265870162534465210783526834107
DLS 14: 012345678120567834387621045874136520638054712456278301201783456543802167765410283
DLS 15: 012345678520167834387621045874536120638014752456278301205783416143802567761450283
DLS 16: 012345678520167834387621045834576120678014352456238701205783416143802567761450283
Adjacency matrix:
0110000000000000
1001111000000000
1000010000000000
0100000000000000
0100000100000000
0110000111000000
0100000010111000
0000110000000000
0000011000000111
0000010000000000
0000001000000100
0000001000000000
0000001000000001
0000000010100000
0000000010000000
0000000010001000
Different CFs set within combinatorial structure:
CF 1: 012345678120487356837521064654173820378064512465238701201756483546802137783610245
CF 2: 012345678120567834387621045834176520678054312456238701201783456543802167765410283
CF 3: 012345678120568743658734201864170352283456017435687120701823465576201834347012586
CF 4: 012345678120567834387621045874136520638054712456278301201783456543802167765410283
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5]
Multiset of vertices powers:
{1:4, 2:8, 5:4}
240. Structure 16N24M2C
DLSs within combinatorial structure:
DLS 1: 012345678124038765587621403678503142346812057851764230765180324403276581230457816
DLS 2: 012345678485612307364708125257184036628073541103256784846537210730461852571820463
DLS 3: 012345678485612307346708215157286034268073541603451782821537460730124856574860123
DLS 4: 012345678875426310328014756457180263703568124160253487684732501231607845546871032
DLS 5: 012345678485612307864753120207134586623570841130286754546807213758461032371028465
...
DLS 12: 012345678341708562786024351624871035138657204503462187450183726875236410267510843
DLS 13: 012345678754836021487012356235174860508267134361528407640783215873601542126450783
DLS 14: 012345678843602715537816420371580246625738104460271583206457831158024367784163052
DLS 15: 012345678875264310283657401124536087701823564436081725567410832658702143340178256
DLS 16: 012345678847602513608734251423176085261857304576083142354218760135460827780521436
Adjacency matrix:
0111110000000000
1000001111000000
1000001011100000
1000000000000000
1000001011010000
1000001011001000
0110110000000100
0100000000000000
0110110000000010
0110110000000001
0010000000000000
0000100000000000
0000010000000000
0000001000000000
0000000010000000
0000000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678124038765587621403678503142346812057851764230765180324403276581230457816
CF 2: 012345678123468705856174230571806324467013852240537186304281567638752041785620413
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5]
Multiset of vertices powers:
{1:8, 5:8}
241. Structure 16N24M2C
DLSs within combinatorial structure:
DLS 1: 012345678230471856824753061786534102648017325471286530157860243563102784305628417
DLS 2: 012345678641832507457120386534681720160758234208473165376204851825067413783516042
DLS 3: 012345678163782405205168734670421583486230157358607241734516820827054316541873062
DLS 4: 012345678821750364768021453157462830236578041645103782483216507304687215570834126
DLS 5: 012345678430167852576281043128506437704823516685714320851032764243670185367458201
...
DLS 12: 012345678630127854548706213154283067273560481865471302421658730307812546786034125
DLS 13: 012345678276184503351876240508463721487650312843702165624031857765218034130527486
DLS 14: 012345678843527106761854230205786413670138524386412057537601842458270361124063785
DLS 15: 012345678425831760534768021850624137748013256601587342183276504376102485267450813
DLS 16: 012345678365078412437281065826107354504826137170534826783462501241653780658710243
Adjacency matrix:
0111000000000000
1000110000000000
1000101000000000
1000000110000000
0110000001000000
0100000000110000
0010000000110000
0001000001001000
0001000001000100
0000100110000000
0000011000000010
0000011000000001
0000000100000011
0000000010000011
0000000000101100
0000000000011100
Different CFs set within combinatorial structure:
CF 1: 012345678230471856824753061786534102648017325471286530157860243563102784305628417
CF 2: 012345678123670854634851207248713560475162083560428731851207346307586412786034125
Ascending sorted vector of vertices powers:
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
Multiset of vertices powers:
{3:16}
242. Structure 16N24M5C
DLSs within combinatorial structure:
DLS 1: 012345678120583746235617084786401235348172560801236457653724801467058312574860123
DLS 2: 012345678835617420648720153201573864574061382367482015420158736153806247786234501
DLS 3: 012345678470582316153467082824156730601823457586704123235671804748230561367018245
DLS 4: 012345678160582347753164082826451730607823451584607123235716804478230516341078265
DLS 5: 012345678478052316185467032324106785631528407856734120203671854740283561567810243
...
DLS 12: 012345678127830546283617054836451207548172360751206483605724831460583712374068125
DLS 13: 012345678471830562283176054837652401568217340156704283605421837740583126324068715
DLS 14: 012345678520813467154732086385671204206458731831267540743106852678024315467580123
DLS 15: 012345678470583162235176084187602435368217540806734251653421807741058326524860713
DLS 16: 012345678328410567184752036843671250256834701501267384735106842670528413467083125
Adjacency matrix:
0100000000000000
1011111000000000
0100000111000000
0100000111000000
0100000111000000
0100000111000000
0100000000000000
0011110000110000
0011110000001100
0011110000000011
0000000100000000
0000000100000000
0000000010000000
0000000010000000
0000000001000000
0000000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678120583746235617084786401235348172560801236457653724801467058312574860123
CF 2: 012345678235476801684103752570684123728510346841237560406851237153762084367028415
CF 3: 012345678123056847608712354367401285234568701851237460780124536475683012546870123
CF 4: 012345678238674501604851732541782063723510846875436120486103257150267384367028415
CF 5: 012345678123780465357821046278603514830456127605214783461037852546178230784562301
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{1:8, 4:4, 6:4}
243. Structure 16N24M8C
DLSs within combinatorial structure:
DLS 1: 012345678120586743358724016745602831836271405274163580683450127467018352501837264
DLS 2: 012345678241873560175468302653781024384027156830516247567204831708632415426150783
DLS 3: 012345678820516743358627014765432801107268435246173580483750126674081352531804267
DLS 4: 012345678120586743358627014765432801807261435246173580483750126674018352531804267
DLS 5: 012345678820516743358627014765402831137268405246173580483750126674081352501834267
...
DLS 12: 012345678641837502175408326283751064754623180830516247527064831368270415406182753
DLS 13: 012345678641837502175408326253781064784623150830516247527064831368270415406152783
DLS 14: 012345678241873560175468302683751024354027186830516247567204831708632415426180753
DLS 15: 012345678241837560175468302683751024754023186830516247567204831308672415426180753
DLS 16: 012345678241837560175468302653781024784023156830516247567204831308672415426150783
Adjacency matrix:
0100000000000000
1011111110000000
0100000001111111
0100000000000111
0100000000000111
0100000000000111
0100000000000000
0100000000000000
0100000000000000
0010000000000000
0010000000000000
0010000000000000
0010000000000000
0011110000000000
0011110000000000
0011110000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120586743358724016745602831836271405274163580683450127467018352501837264
CF 2: 012345678120768435754236180547810326638057241863421507386502714475183062201674853
CF 3: 012345678120468735457236180574810326638057241863721504386502417745183062201674853
CF 4: 012345678230476815768051432485167320541823067673504281156280743807632154324718506
CF 5: 012345678120586743358627014765402831837261405246173580483750126674018352501834267
CF 6: 012345678123768405356480127438176052840532716605217843784023561271654380567801234
CF 7: 012345678120586743358724016745632801806271435274163580683450127467018352531807264
CF 8: 012345678124067835458713026731506482603872541860134257375628104547281360286450713
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 8, 8]
Multiset of vertices powers:
{1:8, 4:6, 8:2}
244. Structure 16N24M12C
DLSs within combinatorial structure:
DLS 1: 012345678123586740435608217870453126706812435341067582567234801258170364684721053
DLS 2: 012345678741802563126087354267534801354621780603178245480753126875416032538260417
DLS 3: 012345678123586740435608217780453126806712435341067582567234801258170364674821053
DLS 4: 012345678623581740435108267870453126701862435346017582567234801258670314184726053
DLS 5: 012345678623581740435108267780453126801762435346017582567234801258670314174826053
...
DLS 12: 012345678623581740405138267870453126731862405364017582547206831258670314186724053
DLS 13: 012345678623581740405138267780453126831762405364017582547206831258670314176824053
DLS 14: 012345678741802563126057384267534801384621750603178245450783126875416032538260417
DLS 15: 012345678741802563126087354267534810354620781603178245480753126875416032538261407
DLS 16: 012345678741802563126057384267534810384620751603178245450783126875416032538261407
Adjacency matrix:
0100000000000000
1011111111111000
0100000000000000
0100000000000111
0100000000000111
0100000000000000
0100000000000000
0100000000000111
0100000000000111
0100000000000000
0100000000000000
0100000000000000
0100000000000000
0001100110000000
0001100110000000
0001100110000000
Different CFs set within combinatorial structure:
CF 1: 012345678123586740435608217870453126706812435341067582567234801258170364684721053
CF 2: 012345678124657803605178432750821364576430281431586720847203156368712045283064517
CF 3: 012345678123586740435608217780453126806712435341067582567234801258170364674821053
CF 4: 012345678124658703635187420740821356576430281401576832857203164368712045283064517
CF 5: 012345678124657803635178420740821356576430281401586732857203164368712045283064517
...
CF 8: 012345678123487065485763120806132754540678312631054287764521803257806431378210546
CF 9: 012345678123487065485763120806132754540678312631024587764251803257806431378510246
CF 10: 012345678123487065805763124486132750540678312761024583634251807257806431378510246
CF 11: 012345678124658703605187432750821364576430281431576820847203156368712045283064517
CF 12: 012345678123487065805763124486132750540678312761054283634521807257806431378210546
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 12]
Multiset of vertices powers:
{1:8, 4:7, 12:1}
245. Structure 16N24M15C
DLSs within combinatorial structure:
DLS 1: 012345678124038765567801423483652107346710582871563240250174836638427051705286314
DLS 2: 012345678361850427258714036637401852820176345105632784483267501746583210574028163
DLS 3: 012345678638572410276183054105864723854027361420751836783416502367208145541630287
DLS 4: 012345678367582410238167054105734826654028731420651387783416502876203145541870263
DLS 5: 012345678851672340406187235374860512287534106640721853735206481563018724128453067
...
DLS 12: 012345678240857361581476230356281407608732145764018523135620784873164052427503816
DLS 13: 012345678176850243824531760750286134547613802361078425405162387638427051283704516
DLS 14: 012345678176038245524801763783256104347610582861573420450162837638427051205784316
DLS 15: 012345678657184320201768435328401756486032517145627083730256841873510264564873102
DLS 16: 012345678865401327348726015287513406631278540403652781524087163750164832176830254
Adjacency matrix:
0111111000000000
1000000111000000
1000000000111100
1000000000101100
1000000000000000
1000000000101100
1000000000101100
0100000000000000
0100000000000000
0100000000000000
0011011000000000
0010000000000000
0011011000000011
0011011000000000
0000000000001000
0000000000001000
Different CFs set within combinatorial structure:
CF 1: 012345678124038765567801423483652107346710582871563240250174836638427051705286314
CF 2: 012345678123086547587410326874531062750268431468753210645872103301624785236107854
CF 3: 012345678123870564367081425405632187746518302851764230270153846638427051584206713
CF 4: 012345678124038765567801423650487132346210857871563240783126504405672381238754016
CF 5: 012345678124038765785162304651784032570216843468503127837621450306457281243870516
...
CF 11: 012345678124038765658174032781652304860213457243567180307481526536720841475806213
CF 12: 012345678124038765658174032781652304345710286836427150463801527270563841507286413
CF 13: 012345678124038765678153042581672403347516820230487156403261587856704231765820314
CF 14: 012345678120678345765284130381402567478031256254716803836520714603157482547863021
CF 15: 012345678123768540485106723851673402647012385708234156370521864264857031536480217
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 5, 6, 6]
Multiset of vertices powers:
{1:7, 4:6, 5:1, 6:2}
246. Structure 16N24M16C
DLSs within combinatorial structure:
DLS 1: 012345678120478536305281764463702185734860251658014327271536840847653012586127403
DLS 2: 012345678271056843623504187105483726386127405547638012860271534458712360734860251
DLS 3: 012345678271054863423506187105683724386127405567438012840271536658712340734860251
DLS 4: 012345678271036845623504187105483726586127403347658012860271534458712360734860251
DLS 5: 012345678271034865423506187105683724586127403367458012840271536658712340734860251
...
DLS 12: 012345678871034265423506187105683724586127403367458012240871536658712340734260851
DLS 13: 012345678271056843623504187105483726386127405547638210860271534458710362734862051
DLS 14: 012345678271036845623504187105483726586127403347658210860271534458710362734862051
DLS 15: 012345678271054863423506187105683724386127405567438210840271536658710342734862051
DLS 16: 012345678271034865423506187105683724586127403367458210840271536658710342734862051
Adjacency matrix:
0111100000000000
1000011100000000
1000011100000000
1000011100000000
1000011100000000
0111100000000000
0111100000000000
0111100011111111
0000000100000000
0000000100000000
0000000100000000
0000000100000000
0000000100000000
0000000100000000
0000000100000000
0000000100000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536305281764463702185734860251658014327271536840847653012586127403
CF 2: 012345678123658047745810362631482750384761205860137524457206813208574136576023481
CF 3: 012345678123586704501864237870613542648072315734158026385720461267431850456207183
CF 4: 012345678123658047745801362631482750384760215860137524457216803208574136576023481
CF 5: 012345678123604857485013762637850124568732041354167280876521403740286315201478536
...
CF 12: 012345678123687540587206134356472081874163205468051327245730816630814752701528463
CF 13: 012345678123486750764530182685102437240678513578013246356721804837254061401867325
CF 14: 012345678123486750764530182680152437245678013578013246356721804837204561401867325
CF 15: 012345678123486750764520183685102437340678512578013246256731804837254061401867325
CF 16: 012345678123486750764520183680152437345678012578013246256731804837204561401867325
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 12]
Multiset of vertices powers:
{1:8, 4:7, 12:1}
247. Structure 16N25M8C
DLSs within combinatorial structure:
DLS 1: 012345678120478536845603712263754180734860251357281064471036825608512347586127403
DLS 2: 012345678271054863653782140805413726386127405428506317160278534547631082734860251
DLS 3: 012345678271056843453782160805613724386127405628504317140278536567431082734860251
DLS 4: 012345678271034865653782140805413726586127403428506317160278534347651082734860251
DLS 5: 012345678271036845453782160805613724586127403628504317140278536367451082734860251
...
DLS 12: 012345678140278536826503714453762180734850261367481052271036845508614327685127403
DLS 13: 012345678271054863653780142805413726386127405428506317160278534547631280734862051
DLS 14: 012345678271056843453780162805613724386127405628504317140278536567431280734862051
DLS 15: 012345678271034865653780142805413726586127403428506317160278534347651280734862051
DLS 16: 012345678271036845453780162805613724586127403628504317140278536367451280734862051
Adjacency matrix:
0111100000000000
1000011100000000
1000011100000000
1000011100000000
1000011111110000
0111100000000000
0111100000000000
0111100000001111
0000100000000000
0000100000000000
0000100000000000
0000100000000001
0000000100000000
0000000100000000
0000000100000000
0000000100010000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536845603712263754180734860251357281064471036825608512347586127403
CF 2: 012345678123586704451760283706854132648072315584123067835607421267431850370218546
CF 3: 012345678123768450756420183480153762345876021837204516264531807501687234678012345
CF 4: 012345678123786450756420183480153762345678021837204516264531807501867234678012345
CF 5: 012345678123468750456720183785103462340876521837254016264531807501687234678012345
CF 6: 012345678123468750456720183780153462345876021837204516264531807501687234678012345
CF 7: 012345678120478536846503712253764180734850261367281054471036825508612347685127403
CF 8: 012345678123486750456720183780153462345678021837204516264531807501867234678012345
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8]
Multiset of vertices powers:
{1:6, 2:2, 4:6, 8:2}
248. Structure 16N26M16C
DLSs within combinatorial structure:
DLS 1: 012345678120478536378614025603182457847051362254736810531260784765803241486527103
DLS 2: 012345678731206845627081354248530716185624037463178502356817420870452163504763281
DLS 3: 012345678731206845627081354248510736385624017463178502156837420870452163504763281
DLS 4: 012345678423178506208634715837461250640752381751206843574083162165827034386510427
DLS 5: 012345678423178506208634715637481250840752361751206843574063182165827034386510427
...
DLS 12: 012345678120478536378614025803162457647051382254736810531280764765803241486527103
DLS 13: 012345678420178536378614025803462157647051382251736840534280761765803214186527403
DLS 14: 012345678420178536378614025603482157847051362251736840534260781765803214186527403
DLS 15: 012345678120478563378614025806132457647051382254763810561280734735806241483527106
DLS 16: 012345678420178563378614025806432157647051382251763840564280731735806214183527406
Adjacency matrix:
0110000000000000
1001111111111100
1001111111111111
0110000000000000
0110000000000000
0110000000000000
0110000000000000
0110000000000000
0110000000000000
0110000000000000
0110000000000000
0110000000000000
0110000000000000
0110000000000000
0010000000000000
0010000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536378614025603182457847051362254736810531260784765803241486527103
CF 2: 012345678123758064358460127407613852284576310631284705760821543845107236576032481
CF 3: 012345678123758064358406127407613852284570316631284705760821543845167230576032481
CF 4: 012345678123784065284506317407621853358470126631258704760813542845167230576032481
CF 5: 012345678123784065284560317407621853358476120631258704760813542845107236576032481
...
CF 12: 012345678120478536378614025803162457647051382254736810531280764765803241486527103
CF 13: 012345678143578260758026143527604831680132457834761502365280714401857326276413085
CF 14: 012345678143578260758026143527604831860132457634781502385260714401857326276413085
CF 15: 012345678120478563378614025806132457647051382254763810561280734735806241483527106
CF 16: 012345678123587406376428150830172564564730821258614037485206713647051382701863245
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 12, 14]
Multiset of vertices powers:
{1:2, 2:12, 12:1, 14:1}
249. Structure 16N28M8C
DLSs within combinatorial structure:
DLS 1: 012345678120478536845603721253784160734860215367251084471036852608512347586127403
DLS 2: 012345678271034865653782104825403716586127430408516327160278543347651082734860251
DLS 3: 012345678271036845453782106825603714586127430608514327140278563367451082734860251
DLS 4: 012345678271034865653782104865403712586127430408516327120678543347251086734860251
DLS 5: 012345678271036845453782106845603712586127430608514327120478563367251084734860251
...
DLS 12: 012345678146278530825603741453782106734860215367451082271036854608514327580127463
DLS 13: 012345678571034862653782104825403716286157430408216357160578243347621085734860521
DLS 14: 012345678571036842453782106825603714286157430608214357140578263367421085734860521
DLS 15: 012345678721034865653287104875403216586172430408516327160728543347651082234860751
DLS 16: 012345678721036845453287106875603214586172430608514327140728563367451082234860751
Adjacency matrix:
0111100000000000
1000011100000000
1000011111110000
1000011100000000
1000011100000000
0111100000000000
0111100000000000
0111100000001111
0010000000000000
0010000000000101
0010000000000000
0010000000000101
0000000100000000
0000000101010000
0000000100000000
0000000101010000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536845603721253784160734860215367251084471036852608512347586127403
CF 2: 012345678123706854781234065467581230840672513658423701306158427534067182275810346
CF 3: 012345678120678534536827410784160253847253061608734125471582306365401782253016847
CF 4: 012345678123706854481237065764581230840672513658423701306158427537064182275810346
CF 5: 012345678120478536845603721253784160734860215376251084461037852608512347587126403
CF 6: 012345678123706854381274065467581230840632517658427301706158423574063182235810746
CF 7: 012345678123486750307658124758123406540862317681074235834207561476531082265710843
CF 8: 012345678123607854781234065476581230840762513658423701307158426534076182265810347
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 8, 8]
Multiset of vertices powers:
{1:4, 3:4, 4:6, 8:2}
250. Structure 16N28M16C
DLSs within combinatorial structure:
DLS 1: 012345678231457860748610523160532784523874016487106352874061235605283147356728401
DLS 2: 012345678820134756653872014401683527275410863368257140536728401147506382784061235
DLS 3: 012345678820134756653872014401653827278410563365287140536728401147506382784061235
DLS 4: 012345678874130256653824710741683502205417863368052147536708421120576384487261035
DLS 5: 012345678874130256653824710741653802208417563365082147536708421120576384487261035
...
DLS 12: 012345678820164753653872014401653827278410536365287140536728401147506382784031265
DLS 13: 012345678870134256653827014401683527725410863368752140536278401147506382284061735
DLS 14: 012345678870134256653827014401653827728410563365782140536278401147506382284061735
DLS 15: 012345678847130256653807412471683520205714863368052147536428701120576384784261035
DLS 16: 012345678847130256653807412471653820208714563365082147536428701120576384784261035
Adjacency matrix:
0111100000000000
1000011111000000
1000011111000000
1000000001000000
1000000001000000
0110000000110000
0110000000001111
0110000000110000
0110000000001111
0111100000000000
0000010100000000
0000010100000000
0000001010000000
0000001010000000
0000001010000000
0000001010000000
Different CFs set within combinatorial structure:
CF 1: 012345678231457860748610523160532784523874016487106352874061235605283147356728401
CF 2: 012345678123786054786450123561807432204531867837264501450123786345678210678012345
CF 3: 012345678123786054786450123501867432264531807837204561450123786345678210678012345
CF 4: 012345678123768054867450123501687432284531706736204581450123867345876210678012345
CF 5: 012345678123768054867450123581607432204531786736284501450123867345876210678012345
...
CF 12: 012345678123087546765138024248751360504863217681204753437612805850476132376520481
CF 13: 012345678123786054876450123561807432204531867738264501450123786345678210687012345
CF 14: 012345678123786054876450123501867432264531807738204561450123786345678210687012345
CF 15: 012345678231480765468057321827534016156728403743106582380672154675213840504861237
CF 16: 012345678231680745648057321827536014156728403763104582380472156475213860504861237
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{2:8, 4:4, 6:4}
251. Structure 16N30M16C
DLSs within combinatorial structure:
DLS 1: 012345678230176845857432061105687423684023157748561302471208536563714280326850714
DLS 2: 012345678174238506435687120860172354328560741651704283703426815246851037587013462
DLS 3: 012345678174238506436587120850172364328650741561704283703426815245861037687013452
DLS 4: 012345678230176845857432061105687423684023157748561302421708536563214780376850214
DLS 5: 012345678423706815851074263245680731680432157108567342374218506567123480736851024
...
DLS 12: 012345678423706815681074253246850731560432187105687342374218506857123460738561024
DLS 13: 012345678243706815681072354436850721560423187105687432374218506857134260728561043
DLS 14: 012345678421706835683074251246850713560412387305687142174238506857123460738561024
DLS 15: 012345678174238506435687120680172354328560741851704263703426815246851037567013482
DLS 16: 012345678174238506436587120580172364328650741861704253703426815245861037657013482
Adjacency matrix:
0110000000000000
1001111111111100
1001111001111100
0110000000000011
0110000000000000
0110000000000000
0110000000000011
0100000000000000
0100000000000000
0110000000000011
0110000000000000
0110000000000000
0110000000000000
0110000000000011
0001001001000100
0001001001000100
Different CFs set within combinatorial structure:
CF 1: 012345678230176845857432061105687423684023157748561302471208536563714280326850714
CF 2: 012345678120476835568013427473681250234758061856207314347560182701832546685124703
CF 3: 012345678120486753568013427475621830256738014834207561347560182701852346683174205
CF 4: 012345678127086534643750281860537142278614350351478026786203415405821763534162807
CF 5: 012345678127054863731628405578461320863572041685203714240816537456730182304187256
...
CF 12: 012345678124768053376580124738106542850432716645217830587023461201654387463871205
CF 13: 012345678123468705485206317736184052854071263670523481501637824367812540248750136
CF 14: 012345678124083765376450281860734152258617340641578023483206517507821436735162804
CF 15: 012345678120476853568013427475681230254738061836207514347560182701852346683124705
CF 16: 012345678120486735568013427473621850236758014854207361347560182701832546685174203
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 10, 12]
Multiset of vertices powers:
{1:2, 2:6, 4:6, 10:1, 12:1}
252. Structure 16N31M16C
DLSs within combinatorial structure:
DLS 1: 012345678123508764654071283745863021830617452278456310387120546406782135561234807
DLS 2: 012345678461073825387402156623180547248751360850614732574836201135267084706528413
DLS 3: 012345678461073825387502146623180457248751360850614732574836201135267084706428513
DLS 4: 012345678465073821387402156623180547248751360850614732174836205531267084706528413
DLS 5: 012345678465073821387502146623180457248751360850614732174836205531267084706428513
...
DLS 12: 012345678387620154645817023531274806870436512268751340706582431423108765154063287
DLS 13: 012345678384520716156874023735216804860137452278451360407682531623708145541063287
DLS 14: 012345678683520714154876023745213806830167452278451360307682541426708135561034287
DLS 15: 012345678461073825387402156623180547208751364850614732574836201135267480746528013
DLS 16: 012345678465073821387402156623180547208751364850614732174836205531267480746528013
Adjacency matrix:
0111100000000000
1000011100000000
1000011100000000
1000011111111100
1000011111111100
0111100000000011
0111100000000000
0111100000000000
0001100000000000
0001100000000000
0001100000000000
0001100000000001
0001100000000000
0001100000000000
0000010000000000
0000010000010000
Different CFs set within combinatorial structure:
CF 1: 012345678123508764654071283745863021830617452278456310387120546406782135561234807
CF 2: 012345678120487563483716052765124380834652107657208431501863724276031845348570216
CF 3: 012345678120567843467813205683420517746058132835601724251784360574236081308172456
CF 4: 012345678120487563483716025765124380834652107657208431201863754576031842348570216
CF 5: 012345678120567843467813250683420517746058132835601724201784365574236081358172406
...
CF 12: 012345678123586740407658321784120536350867412835214067261473805678031254546702183
CF 13: 012345678123468705405286317786134052354871260670523481531607824867012543248750136
CF 14: 012345678120768453346580127438176502857432016675214830584023761201657384763801245
CF 15: 012345678120487563843716052765124380438652107657208431501863724276031845384570216
CF 16: 012345678120487563843716025765124380438652107657208431201863754576031842384570216
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 6, 10, 10]
Multiset of vertices powers:
{1:1, 2:6, 3:1, 4:5, 6:1, 10:2}
253. Structure 16N32M8C
DLSs within combinatorial structure:
DLS 1: 012345678127568340543871062460182753206453817834607521781026435675230184358714206
DLS 2: 012345678845203167187062453231657084658730241463128705370814526724586310506471832
DLS 3: 012345678875203164184062753231654087658730241763128405340817526427586310506471832
DLS 4: 012345678845203167687012453231657084158730246463128705370864521724586310506471832
DLS 5: 012345678875203164684012753231654087158730246763128405340867521427586310506471832
...
DLS 12: 012345678275803164184062753831654027658730241763128405340217586427586310506471832
DLS 13: 012345678845023167628710543531607824170534286763182450354268701407856312286471035
DLS 14: 012345678845023167128760543531607824670534281763182450354218706407856312286471035
DLS 15: 012345678127586340534678102408132756246851037381067524763420815875203461650714283
DLS 16: 012345678127586340534628107408132756746851032381067524263470815875203461650714283
Adjacency matrix:
0111100000000000
1000010000000000
1000011111000000
1000010000000000
1000011111000000
0111100000000000
0010100000110000
0010100000111100
0010100000110000
0010100000111100
0000001111000000
0000001111000000
0000000101000011
0000000101000011
0000000000001100
0000000000001100
Different CFs set within combinatorial structure:
CF 1: 012345678127568340543871062460182753206453817834607521781026435675230184358714206
CF 2: 012345678124087536751463280538621704645870312806534127370216845263708451487152063
CF 3: 012345678230816745651278034864701523176453802347682150583027461425160387708534216
CF 4: 012345678124708356731564280806453127643870512358126704570612843265087431487231065
CF 5: 012345678231687540587231064140572386704863215863104752425016837678450123356728401
CF 6: 012345678123807546785634012637482105574063281860751324241570863458216730306128457
CF 7: 012345678231687540785231064140752386504863217863104752427016835658470123376528401
CF 8: 012345678230816745846702153725160384167453802451278036583027461374681520608534217
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{2:4, 4:8, 6:4}
254. Structure 16N32M8C
DLSs within combinatorial structure:
DLS 1: 012345678124687503603721485248576310576013842457268031385104726830452167761830254
DLS 2: 012345678758130264837264150420613587345826701683701425164057832201578346576482013
DLS 3: 012345678358170264837264150420613587745826301683701425164057832201538746576482013
DLS 4: 012345678758130264837264150470613582345826701683701425164052837201578346526487013
DLS 5: 012345678358170264837264150470613582745826301683701425164052837201538746526487013
...
DLS 12: 012345678524617803603721485248176350876053142457268031381504726130482567765830214
DLS 13: 012345678567084132723601485248167350130452867356278041481523706804716523675830214
DLS 14: 012345678167084532723601485248567310530412867356278041485123706804756123671830254
DLS 15: 012345678567014832723601485248167350830452167356278041481523706104786523675830214
DLS 16: 012345678167054832723601485248567310830412567356278041485123706504786123671830254
Adjacency matrix:
0111111110000000
1000000001000000
1000000001000000
1000000001000000
1000000001000000
1000000001110000
1000000001110000
1000000001111111
1000000001111111
0111111110000000
0000011110000000
0000011110000000
0000000110000000
0000000110000000
0000000110000000
0000000110000000
Different CFs set within combinatorial structure:
CF 1: 012345678124687503603721485248576310576013842457268031385104726830452167761830254
CF 2: 012345678120468735387152064536827401403516827845673210764201583658730142271084356
CF 3: 012345678120468735387152064536827401408516327845673210764201583653780142271034856
CF 4: 012345678123764805307586412456802137845137260784621053261073584670258341538410726
CF 5: 012345678123480756487561302530876241358614027645723810764102583801237465276058134
CF 6: 012345678120678534647251083534867201708514326865403712386120457451732860273086145
CF 7: 012345678120678534647251083534867201703514826865403712386120457451782360278036145
CF 8: 012345678124657803603721485248576310876013542457268031385104726530482167761830254
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8]
Multiset of vertices powers:
{2:8, 4:4, 8:4}
255. Structure 16N32M14C
DLSs within combinatorial structure:
DLS 1: 012345678123487560708561324481630752340758216637124805564072183875206431256813047
DLS 2: 012345678851620734137206485263487501576813042704538126380164257428751360645072813
DLS 3: 012345678851620734167203485236487501573816042704538126380164257428751360645072813
DLS 4: 012345678423187560708564321184630752340758216637421805561072483875206134256813047
DLS 5: 012345678423187560508764321184630752340578216635421807761052483857206134276813045
...
DLS 12: 012345678251608437164253780836724501573816042487032156305167824720481365648570213
DLS 13: 012345678251608734137256480863427501576813042784032156305164827420781365648570213
DLS 14: 012345678251608734167253480836427501573816042784032156305164827420781365648570213
DLS 15: 012345678423187560508764321184630752340578216635421087761852403857206134276013845
DLS 16: 012345678123487560508761324481630752340578216635124087764852103857206431276013845
Adjacency matrix:
0110000000000000
1001111100000000
1001111100000000
0110000000000000
0110000011111100
0110000000000000
0110000011111100
0110000000000000
0000101000000000
0000101000000000
0000101000000011
0000101000000011
0000101000000011
0000101000000011
0000000000111100
0000000000111100
Different CFs set within combinatorial structure:
CF 1: 012345678123487560708561324481630752340758216637124805564072183875206431256813047
CF 2: 012345678120567843236051784754182360647830521475608132861273405308714256583426017
CF 3: 012345678123480756465273081687102345754861203238714560571036824840657132306528417
CF 4: 012345678123754806754086123481632750346578012268401537875120364530267481607813245
CF 5: 012345678123480756358726104781564230640872315467031582806153427534207861275618043
...
CF 10: 012345678123487065368721504805164237540872316457036182781653420634208751276510843
CF 11: 012345678120678534265483710408732165384160257657014823871506342743251086536827401
CF 12: 012345678123586740504762183468170352370458216785603421647231805831027564256814037
CF 13: 012345678123480765358726104781654230540872316467031582805163427634207851276518043
CF 14: 012345678123487560508761324481630752340578216635124087764852103857206431276013845
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 8, 8]
Multiset of vertices powers:
{2:6, 4:6, 6:2, 8:2}
256. Structure 16N32M16C
DLSs within combinatorial structure:
DLS 1: 012345678120467835743816250357680124685271403836524017201738546564103782478052361
DLS 2: 012345678351082764874523016530167482206738541487216305625471830748650123163804257
DLS 3: 012345678351082764874523016536107482260738541487216305625471830748650123103864257
DLS 4: 012345678351028764274583016530167482806732541487216305625471830748650123163804257
DLS 5: 012345678351028764274583016536107482860732541487216305625471830748650123103864257
...
DLS 12: 012345678625817430783461205357680124140276853836524017201738546564103782478052361
DLS 13: 012345678125467830743816205357680124680271453836524017201738546564103782478052361
DLS 14: 012345678125867430783416205357680124640271853836524017201738546564103782478052361
DLS 15: 012345678620417835743861250387650124158276403236584017801732546564103782475028361
DLS 16: 012345678120467835743816250387650124658271403236584017801732546564103782475028361
Adjacency matrix:
0111100000000000
1000011111111100
1000011010000011
1000011111111100
1000011010000011
0111100000000000
0111100000000000
0101000000000000
0111100000000000
0101000000000000
0101000000000000
0101000000000000
0101000000000000
0101000000000000
0010100000000000
0010100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120467835743816250357680124685271403836524017201738546564103782478052361
CF 2: 012345678123760854705614382346852710634178025857026143571283406268401537480537261
CF 3: 012345678123760854705614382346852710684173025857026143571238406268401537430587261
CF 4: 012345678123408765657014382280137456348651027834276510561720834705863241476582103
CF 5: 012345678123408765657014382380127456248651037834276510561730824705863241476582103
...
CF 12: 012345678120687453735018264683450127846571302258163740504726831467832015371204586
CF 13: 012345678120483765485261037754612803863074152637508421501827346248736510376150284
CF 14: 012345678120586743483162057657803421845670132736214805301728564268457310574031286
CF 15: 012345678123750846457136280680427513348562107765018432871604325236871054504283761
CF 16: 012345678120467835743816250387650124658271403236584017801732546564103782475028361
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 10, 10]
Multiset of vertices powers:
{2:8, 4:4, 6:2, 10:2}
257. Structure 16N33M8C
DLSs within combinatorial structure:
DLS 1: 012345678123876540674531082846753201280164753435208167501687324357420816768012435
DLS 2: 012345678830164752786253401478532016563410287241687530657021843104876325325708164
DLS 3: 012345678830164752586273401478532016763410285241687530657021843104856327325708164
DLS 4: 012345678830164752786253401473582016568410237241637580657021843104876325325708164
DLS 5: 012345678830164752586273401473582016768410235241637580657021843104856327325708164
...
DLS 12: 012345678378561042805472361124687530657024813486153207240738156763210485531806724
DLS 13: 012345678378561042805472361124657830687024513456183207240738156763210485531806724
DLS 14: 012345678746253801251768430435801726108472365874536012563014287320687154687120543
DLS 15: 012345678746253801251768430405831726138472065874506312563014287320687154687120543
DLS 16: 012345678746213805251768430405831726538472061874506312163054287320687154687120543
Adjacency matrix:
0111100000000000
1000011100000000
1000011100000000
1000011100000000
1000011100000000
0111100010000000
0111100000000000
0111100000000000
0000010001111000
0000000010000111
0000000010000111
0000000010000111
0000000010000111
0000000001111000
0000000001111000
0000000001111000
Different CFs set within combinatorial structure:
CF 1: 012345678123876540674531082846753201280164753435208167501687324357420816768012435
CF 2: 012345678123876540647528013486103257375461802830254761501687324254730186768012435
CF 3: 012345678123876540647528013486153207370461852835204761501687324254730186768012435
CF 4: 012345678123876540647538012486103257275461803830254761501687324354720186768012435
CF 5: 012345678123876540647538012486153207270461853835204761501687324354720186768012435
CF 6: 012345678123876540674521083846753201380164752435208167501687324257430816768012435
CF 7: 012345678123876540674531082846703251285164703430258167501687324357420816768012435
CF 8: 012345678123876540674521083846703251385164702430258167501687324257430816768012435
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5]
Multiset of vertices powers:
{4:14, 5:2}
258. Structure 16N34M8C
DLSs within combinatorial structure:
DLS 1: 012345678123584706248076315467132850354760281785413062831607524670258143506821437
DLS 2: 012345678281603547375281064830457126706128435428576301643812750567034812154760283
DLS 3: 012345678281403567375281046830657124706128435628574301463812750547036812154760283
DLS 4: 012345678281603547375218064830457126706821435428576301643182750567034812154760283
DLS 5: 012345678281403567375218046830657124706821435628574301463182750547036812154760283
...
DLS 12: 012345678527036814154760283835607142481253067370418526263184750706821435648572301
DLS 13: 012345678527036814154780263835617042460253187371408526283164750706821435648572301
DLS 14: 012345678470258163506821437647182350128536704263074815831407526354760281785613042
DLS 15: 012345678470258163526801437648172350107536824263084715831427506354760281785613042
DLS 16: 012345678470258163526801437647182350108536724263074815831427506354760281785613042
Adjacency matrix:
0111100000000000
1000011100000000
1000011100000000
1000011110000000
1000011100000000
0111100001000000
0111100000000000
0111100000000000
0001000001111000
0000010010000111
0000000010000111
0000000010000111
0000000010000111
0000000001111000
0000000001111000
0000000001111000
Different CFs set within combinatorial structure:
CF 1: 012345678123584706248076315467132850354760281785413062831607524670258143506821437
CF 2: 012345678123486750456837102708163425540278316681054237834702561367521084275610843
CF 3: 012345678123486750456837102708153426640278315581064237834702561367521084275610843
CF 4: 012345678123786450346528107480153726265471083837204561754630812501867234678012345
CF 5: 012345678123786450756420183847153062430678521385204716264531807501867234678012345
CF 6: 012345678123768450756420183847103562435876021380254716264531807501687234678012345
CF 7: 012345678123786450756420183847103562435678021380254716264531807501867234678012345
CF 8: 012345678123768450756420183847153062430876521385204716264531807501687234678012345
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5]
Multiset of vertices powers:
{4:12, 5:4}
259. Structure 16N34M8C
DLSs within combinatorial structure:
DLS 1: 012345678230584761685701432421863057703426815368017524547632180856170243174258306
DLS 2: 012345678548017326421863057685701432176238504230586741854170263367452180703624815
DLS 3: 012345678568017324421863057685701432174238506230584761856170243347652180703426815
DLS 4: 012345678148057326421863057685701432576238104230586741854170263367412580703624815
DLS 5: 012345678168057324421863057685701432574238106230584761856170243347612580703426815
...
DLS 12: 012345678168057342241863057685701234574238106430582761856170423327614580703426815
DLS 13: 012345678568017342241863057685701234174238506430582761856170423327654180703426815
DLS 14: 012345678568173042107864253685430721324718506473582160856207314230651487741026835
DLS 15: 012345678568173024107862453685230741324718506273584160856407312430651287741026835
DLS 16: 012345678173582460685130724407861253741026835568473012230654187856207341324718506
Adjacency matrix:
0111100000000000
1000011100000000
1000011111100000
1000011100000000
1000011111000000
0111100000011100
0111100000011000
0111100000000000
0010100000011000
0010100000011000
0010000000000110
0000011011000000
0000011011000000
0000010000100001
0000000000100001
0000000000000110
Different CFs set within combinatorial structure:
CF 1: 012345678230584761685701432421863057703426815368017524547632180856170243174258306
CF 2: 012345678123867504804523167567104823256738041738216450345082716471650382680471235
CF 3: 012345678123486750684521037570812346245670813758163402306758124837204561461037285
CF 4: 012345678120478536506837421754180263367251084845603712431726805678512340283064157
CF 5: 012345678123864507508271463740526831671430285465187320837602154356018742284753016
CF 6: 012345678120478536506837421754160283387251064845603712431726805678512340263084157
CF 7: 012345678123854760875016243758463021346570812460128357234607185601782534587231406
CF 8: 012345678123584760875016243758463021346870512460128357234607185601752834587231406
Ascending sorted vector of vertices powers:
[2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 7, 7]
Multiset of vertices powers:
{2:2, 3:2, 4:8, 6:2, 7:2}
260. Structure 16N36M8C
DLSs within combinatorial structure:
DLS 1: 012345678123786054756420183480153726345678210831204567264537801507861432678012345
DLS 2: 012345678831207465504861237267534801678012543423786150180453726756120384345678012
DLS 3: 012345678831204765507861234264537801678012543723486150180753426456120387345678012
DLS 4: 012345678837201465504867231261534807678012543423786150180453726756120384345678012
DLS 5: 012345678834201765507864231261537804678012543723486150180753426456120387345678012
...
DLS 12: 012345678423768051756120483180453726345876210834201567261537804507684132678012345
DLS 13: 012345678831027465504861237267534801678210543423786150180453726756102384345678012
DLS 14: 012345678831024765507861234264537801678210543723486150180753426456102387345678012
DLS 15: 012345678837021465504867231261534807678210543423786150180453726756102384345678012
DLS 16: 012345678834021765507864231261537804678210543723486150180753426456102387345678012
Adjacency matrix:
0111100000000000
1000011100000000
1000011100000000
1000011111110000
1000011111110000
0111100000001111
0111100000001111
0111100000000000
0001100000000011
0001100000000011
0001100000000000
0001100000000000
0000011000000000
0000011000000000
0000011011000000
0000011011000000
Different CFs set within combinatorial structure:
CF 1: 012345678123786054756420183480153726345678210831204567264537801507861432678012345
CF 2: 012345678123786450756420183580163724345678012831204567264537801407851236678012345
CF 3: 012345678123786450756420183580163724345678012837204561264531807401857236678012345
CF 4: 012345678123786054756420183480153726345678210837204561264531807501867432678012345
CF 5: 012345678123768054756420183480153726345876210837204561264531807501687432678012345
CF 6: 012345678123786450756430182580163724245678013837204561364521807401857236678012345
CF 7: 012345678123768054756420183480153726345876210831204567264537801507681432678012345
CF 8: 012345678123786450756430182580163724245678013831204567364527801407851236678012345
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8]
Multiset of vertices powers:
{2:4, 4:8, 8:4}
261. Structure 16N36M16C
DLSs within combinatorial structure:
DLS 1: 012345678123768054756420183480153726345876210861234507234507861507681432678012345
DLS 2: 012345678837201465504867231261534807678012543483756120120483756756120384345678012
DLS 3: 012345678834201765507864231261537804678012543783456120120783456456120387345678012
DLS 4: 012345678123786054756420183480153726345678210867234501234501867501867432678012345
DLS 5: 012345678423786051756120483180453726345678210867231504231504867504867132678012345
...
DLS 12: 012345678831024765507861234264537801678210543783456120120783456456102387345678012
DLS 13: 012345678837021465504867231261534807678210543483756120120483756756102384345678012
DLS 14: 012345678834021765507864231261537804678210543783456120120783456456102387345678012
DLS 15: 012345678831207465504861237267534801678012543483756120120483756756120384345678012
DLS 16: 012345678831204765507861234264537801678012543783456120120783456456120387345678012
Adjacency matrix:
0110000000000000
1001111111000000
1001111111000000
0110000000111111
0110000000111111
0110000000000011
0110000000000011
0110000000001100
0110000000001100
0110000000000000
0001100000000000
0001100000000000
0001100110000000
0001100110000000
0001111000000000
0001111000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123768054756420183480153726345876210861234507234507861507681432678012345
CF 2: 012345678123874056578630124460152783754068231231487560847506312605213847386721405
CF 3: 012345678123786054786450123450123786345678210837204561264531807501867432678012345
CF 4: 012345678123786054756420183480153726345678210867234501234501867501867432678012345
CF 5: 012345678123486750864507231231864507645078312750123486586730124407251863378612045
...
CF 12: 012345678123576804481750263506824137648032715354167082875603421267481350730218546
CF 13: 012345678126483750653728104708156423340672815581034267864207531437561082275810346
CF 14: 012345678123768054786450123450123786345876210837204561264531807501687432678012345
CF 15: 012345678123874056578230164460152783754068231631487520847506312205613847386721405
CF 16: 012345678123786054786450123450123786345678210831204567264537801507861432678012345
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8]
Multiset of vertices powers:
{2:4, 4:8, 8:4}
262. Structure 16N36M16C
DLSs within combinatorial structure:
DLS 1: 012345678123658047654871302387510264238764510405237186761402853870126435546083721
DLS 2: 012345678564107823387562140645283701120856437853471062476028315201734586738610254
DLS 3: 012345678564107823837562140645283701120856437358471062476028315201734586783610254
DLS 4: 012345678564107823387562140645283701170856432853421067426078315201734586738610254
DLS 5: 012345678564107823837562140645283701170856432358421067426078315201734586783610254
...
DLS 12: 012345678173658042654821307387510264738264510405732186261407853820176435546083721
DLS 13: 012345678564207813387561240645183702120856437853472061476018325201734586738620154
DLS 14: 012345678564207813837561240645183702120856437358472061476018325201734586783620154
DLS 15: 012345678564108723387562140645273801170856432853421067426087315201734586738610254
DLS 16: 012345678564108723837562140645273801170856432358421067426087315201734586783610254
Adjacency matrix:
0111100000000000
1000011111110000
1000011111110000
1000011111110000
1000011111110000
0111100000001100
0111100000000011
0111100000000000
0111100000000000
0111100000000000
0111100000000000
0111100000000000
0000010000000000
0000010000000000
0000001000000000
0000001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123658047654871302387510264238764510405237186761402853870126435546083721
CF 2: 012345678120483765485261037754612803236874150673508421861057342548730216307126584
CF 3: 012345678123750846457183260680427513308564127765018432841672305236801754574236081
CF 4: 012345678120573846437081265763810452508467123685724310841236507256108734374652081
CF 5: 012345678123570846457183260680427513308764125765018432841652307236801754574236081
...
CF 12: 012345678123684750375820164567412083604738521281067435436571802840256317758103246
CF 13: 012345678120476835784152063673824510435618702356207184847560321261083457508731246
CF 14: 012345678120576834784152063673824510435618702346207185857460321261083457508731246
CF 15: 012345678120456837784132065635824710478613502356207184847560321261078453503781246
CF 16: 012345678120457836784132065635824710468713502357206184846570321271068453503681247
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 6, 6, 8, 8, 8, 8]
Multiset of vertices powers:
{1:4, 4:6, 6:2, 8:4}
263. Structure 16N40M8C
DLSs within combinatorial structure:
DLS 1: 012345678120467835734581062463752180685014723201638547857206314346870251578123406
DLS 2: 012345678471038526658213704586170243734652081327406815203581467865724130140867352
DLS 3: 012345678471038526658213704586170243734852061327406815203561487865724130140687352
DLS 4: 012345678120476835374681052437562180586014723201738546865207314743850261658123407
DLS 5: 012345678120476835734681052473562180586014723201738546865207314347850261658123407
...
DLS 12: 012345678120467835734581062463752180685214703201638547857026314346870251578103426
DLS 13: 012345678437108526658217304586730241374652180120476835201583467865024713743861052
DLS 14: 012345678437108526658217304586730241374852160120476835201563487865024713743681052
DLS 15: 012345678120467835734681052463572180586214703201738546875026314347850261658103427
DLS 16: 012345678120467835734681052463572180586014723201738546875206314347850261658123407
Adjacency matrix:
0110000000000000
1001111111110000
1001111111110000
0110000000001100
0110000000001100
0110000000001100
0110000000001100
0110000000001100
0110000000001100
0110000000001100
0110000000001100
0110000000000000
0001111111100011
0001111111100011
0000000000001100
0000000000001100
Different CFs set within combinatorial structure:
CF 1: 012345678120467835734581062463752180685014723201638547857206314346870251578123406
CF 2: 012345678230678145325816704751482063147063582864127350473250816608531427586704231
CF 3: 012345678230576841761830254526487103647051382374628015853214760408163527185702436
CF 4: 012345678120468357587104263634581720201637485758026134346750812875213046463872501
CF 5: 012345678120468357587104263634581702201637485758026134346752810875213046463870521
CF 6: 012345678120468357587106243436581720201637485758024136364750812875213064643872501
CF 7: 012345678120468357587106243436581702201637485758024136364752810875213064643870521
CF 8: 012345678120467835734581062463752180685214703201638547857026314346870251578103426
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 10, 10, 10, 10]
Multiset of vertices powers:
{2:4, 4:8, 10:4}
264. Structure 16N40M14C
DLSs within combinatorial structure:
DLS 1: 012345678231078546168507234847251063785460312356714820423186705604823157570632481
DLS 2: 012345678526734801403182756650873124174256083738601542861527430347018265285460317
DLS 3: 012345678526734801403182756650873124174256083837601542761528430348017265285460317
DLS 4: 012345678526714803403182756650873124374256081738601542861527430147038265285460317
DLS 5: 012345678526714803403182756650873124374256081837601542761528430148037265285460317
...
DLS 12: 012345678731028546168507234847251063285460317356714820423186705604873152570632481
DLS 13: 012345678731528046268057134847102563185460327356784210423816705604273851570631482
DLS 14: 012345678731582046168057234847201563285460317356724180423816705604173852570638421
DLS 15: 012345678731028546268507134847152063185460327356784210423816705604273851570631482
DLS 16: 012345678731082546168507234847251063285460317356724180423816705604173852570638421
Adjacency matrix:
0111100000000000
1000011111110000
1000011111110000
1000011111111111
1000011111111111
0111100000000000
0111100000000000
0111100000000000
0111100000000000
0111100000000000
0111100000000000
0111100000000000
0001100000000000
0001100000000000
0001100000000000
0001100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678231078546168507234847251063785460312356714820423186705604823157570632481
CF 2: 012345678123706854608452713467520381580137246734681502371068425845273160256814037
CF 3: 012345678123706854608452713467520381580137246734681520371268405845073162256814037
CF 4: 012345678123706854508462713467520381680137245734681502371058426845273160256814037
CF 5: 012345678123706854508462713467520381680137245734681520371258406845073162256814037
...
CF 10: 012345678234071865726480153561837204183756420807214536450623781648502317375168042
CF 11: 012345678231078546168507234847251063785460312356784120423816705604123857570632481
CF 12: 012345678231657840605483127847136052386721405754068231123504786478210563560872314
CF 13: 012345678123487560604871325457620813780153246365718402831206754548062137276534081
CF 14: 012345678123487560684071325457620813708153246365718402831206754540862137276534081
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 12, 12]
Multiset of vertices powers:
{2:4, 4:8, 8:2, 12:2}
265. Structure 16N40M16C
DLSs within combinatorial structure:
DLS 1: 012345678123487560356120487507861234648072315761534802480753126834206751275618043
DLS 2: 012345678231658704764081325183726450376510842658402137807234561425167083540873216
DLS 3: 012345678231568704764081325183726450375610842658402137807234561426157083540873216
DLS 4: 012345678231658407467081325183426750376510842658702134804237561725164083540873216
DLS 5: 012345678231568407467081325183426750375610842658702134804237561726154083540873216
...
DLS 12: 012345678423187560356428107507864231648072315764531082180753426831206754275610843
DLS 13: 012345678423187560356420187507864231648072315764531802180753426831206754275618043
DLS 14: 012345678480137562856402137537264081648073215764581320123758406301826754275610843
DLS 15: 012345678123487560356128407507861234648072315761534082480753126834206751275610843
DLS 16: 012345678180437562856102437537261084648073215761584320423758106304826751275610843
Adjacency matrix:
0111100000000000
1000011111111111
1000011011011010
1000011111111111
1000011011011010
0111100000000000
0111100000000000
0101000000000000
0111100000000000
0111100000000000
0101000000000000
0111100000000000
0111100000000000
0101000000000000
0111100000000000
0101000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123487560356120487507861234648072315761534802480753126834206751275618043
CF 2: 012345678123486750761520483507862134345678012256134807480751326834207561678013245
CF 3: 012345678123486750761530482507862134245678013356124807480751326834207561678013245
CF 4: 012345678123468705308521467861703524634057281457186032786234150570812346245670813
CF 5: 012345678123468705308521467861703524684057231457136082736284150570812346245670813
...
CF 12: 012345678124538706735681420861402357246873015407156832583027164350764281678210543
CF 13: 012345678124568703735681420861402357243876015407153862586027134650734281378210546
CF 14: 012345678124586730705831426381462057246073815467158302530627184853704261678210543
CF 15: 012345678123487560356128407507861234648072315761534082480753126834206751275610843
CF 16: 012345678123764805804521763761803524670452381358176240436087152547218036285630417
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 12, 12]
Multiset of vertices powers:
{2:4, 4:8, 8:2, 12:2}
266. Structure 16N42M8C
DLSs within combinatorial structure:
DLS 1: 012345678120458736536782401784160253365271084847603512401536827653827140278014365
DLS 2: 012345678251784360784601253536827401473016825608532147160253784847160532325478016
DLS 3: 012345678251734860784601253536827401478016325603582147160253784847160532325478016
DLS 4: 012345678251734860874601253536827401487016325603582147160253784748160532325478016
DLS 5: 012345678251084367784601253536827401403716825678532140160253784847160532325478016
...
DLS 12: 012345678820451736536782410784160253365278104147603582401536827653827041278014365
DLS 13: 012345678820451736536728410784160253365872104147603582401536827653287041278014365
DLS 14: 012345678251784360784061253536827401473610825608532147160253784847106532325478016
DLS 15: 012345678251734860784061253536827401478610325603582147160253784847106532325478016
DLS 16: 012345678251734860874061253536827401487610325603582147160253784748106532325478016
Adjacency matrix:
0111110000000000
1000001111100000
1000001111111000
1000001100011000
1000001010100000
1000001010110000
0111110000000111
0111000000000111
0110110000000110
0110000000000110
0110110000000000
0011010000000011
0011000000000011
0000001111000000
0000001111011000
0000001100011000
Different CFs set within combinatorial structure:
CF 1: 012345678120458736536782401784160253365271084847603512401536827653827140278014365
CF 2: 012345678123786450756428103608153724345670812837204561570812346264531087481067235
CF 3: 012345678123786450756438102608153724245670813837204561570812346364521087481067235
CF 4: 012345678123486750864507231275610843540872316758163402306758124631024587487231065
CF 5: 012345678123567804745280361584612037236874510368401725801723456457036182670158243
CF 6: 012345678230584761485263017673801452741026835168457320507632184856170243324718506
CF 7: 012345678230581764185263047673804152741026835468157320507632481856470213324718506
CF 8: 012345678123567804705284361548612037264873510386401725831720456457036182670158243
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 8, 8]
Multiset of vertices powers:
{4:6, 5:4, 6:4, 8:2}
267. Structure 16N64M2C
DLSs within combinatorial structure:
DLS 1: 012345678236854701874106532748532160523610847601487325487061253165273084350728416
DLS 2: 012345678781430256653827410827653041140278563365104782536782104408516327274061835
DLS 3: 012345678781430256653287410827653041140872563365104782536728104408516327274061835
DLS 4: 012345678783610254156827340827456013640278531465103782534782106308561427271034865
DLS 5: 012345678783610254156287340827456013640872531465103782534728106308561427271034865
...
DLS 12: 012345678436872501845160237573284160758016342601537824287601453164723085320458716
DLS 13: 012345678236854701874160532743582160528016347601437825487601253165273084350728416
DLS 14: 012345678436872501845106237578234160753610842601587324287061453164723085320458716
DLS 15: 012345678436872501845160237578234160753016842601587324287601453164723085320458716
DLS 16: 012345678236854701874160532748532160523016847601487325487601253165273084350728416
Adjacency matrix:
0111111110000000
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
Different CFs set within combinatorial structure:
CF 1: 012345678236854701874106532748532160523610847601487325487061253165273084350728416
CF 2: 012345678236854701874106532743582160528610347601437825487061253165273084350728416
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{8:16}
268. Structure 16N64M3C
DLSs within combinatorial structure:
DLS 1: 012345678238016745625438017160753284387160452753284160401527836874601523546872301
DLS 2: 012345678356287014478061352635104827104728536827536401240613785563872140781450263
DLS 3: 012345678356278014478061352635104827104827536827536401240613785563782140781450263
DLS 4: 012345678356287014478061352605134827134728506827506431240613785563872140781450263
DLS 5: 012345678356278014478061352605134827134827506827506431240613785563782140781450263
...
DLS 12: 012345678238016745625438017160783254357160482783254160401527836874601523546872301
DLS 13: 012345678478106235635728014160487352253061487784253160301572846847610523526834701
DLS 14: 012345678478106235635728014160457382283061457754283160301572846847610523526834701
DLS 15: 012345678478016235635728014160487352253160487784253160301572846847601523526834701
DLS 16: 012345678478016235635728014160457382283160457754283160301572846847601523526834701
Adjacency matrix:
0111111110000000
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
Different CFs set within combinatorial structure:
CF 1: 012345678238016745625438017160753284387160452753284160401527836874601523546872301
CF 2: 012345678230687514456102387528760431107453826643218705874026153365871240781534062
CF 3: 012345678230687514456102387528710436607453821143268705874026153365871240781534062
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{8:16}
269. Structure 16N64M4C
DLSs within combinatorial structure:
DLS 1: 012345678235680714624108357570862431307451826461037285856724103148273560783516042
DLS 2: 012345678471802356135087462754620813260734185306158724587461230823516047648273501
DLS 3: 012345678471802356135067482754620813280734165306158724567481230823516047648273501
DLS 4: 012345678470812356135087462754620813261734085306158724587461230823506147648273501
DLS 5: 012345678470812356135067482754620813281734065306158724567481230823506147648273501
...
DLS 12: 012345678235670814624108357570862431308451726461037285856724103147283560783516042
DLS 13: 012345678235680741406128357570832164127456803643017285851703426368274510784561032
DLS 14: 012345678235670841406128357570832164128456703643017285851703426367284510784561032
DLS 15: 012345678235680714604128357570862431327451806461037285856704123148273560783516042
DLS 16: 012345678235670814604128357570862431328451706461037285856704123147283560783516042
Adjacency matrix:
0111111110000000
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
Different CFs set within combinatorial structure:
CF 1: 012345678235680714624108357570862431307451826461037285856724103148273560783516042
CF 2: 012345678234756801687103254406587123578610342851432067725861430163024785340278516
CF 3: 012345678235670814624108357570862431308451726461037285856724103147283560783516042
CF 4: 012345678235670814604128357570862431328451706461037285856704123147283560783516042
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{8:16}
270. Structure 16N64M6C
DLSs within combinatorial structure:
DLS 1: 012345678123468507587013264258637140601752483870124356734206815465871032346580721
DLS 2: 012345678754206813346580721875164032463821507208637145120478356631752480587013264
DLS 3: 012345678754206813346580721865174032473821506208637145120468357631752480587013264
DLS 4: 012345678758206143346580721475861032163428507201637485820174356634752810587013264
DLS 5: 012345678758206143346580721465871032173428506201637485820164357634752810587013264
...
DLS 12: 012345678123468507587013264258607143631752480870124356704236815465871032346580721
DLS 13: 012345678423861507587013264254607813638752140170428356701236485865174032346580721
DLS 14: 012345678163478502587013264758236140201657483820164357634702815475821036346580721
DLS 15: 012345678463871502587013264754236810208657143120468357631702485875124036346580721
DLS 16: 012345678423861507587013264254637810608752143170428356731206485865174032346580721
Adjacency matrix:
0111111110000000
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
Different CFs set within combinatorial structure:
CF 1: 012345678123468507587013264258637140601752483870124356734206815465871032346580721
CF 2: 012345678120486357263871405634752810758260143875124036487013562501637284346508721
CF 3: 012345678120487365705638214857123046634571820483016752261850437346702581578264103
CF 4: 012345678123468507587013264258607143631752480870124356704236815465871032346580721
CF 5: 012345678123784056375406281754810362508261734860173425247658103631527840486032517
CF 6: 012345678123784056375406281754810362208561734860173425547628103631257840486032517
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{8:16}
271. Structure 16N64M8C
DLSs within combinatorial structure:
DLS 1: 012345678124768503506182437785403162378510246831657024467821350650234781243076815
DLS 2: 012345678586024137451837206327561084240678315163482750835706421704153862678210543
DLS 3: 012345678286054137451837206327561084540678312163482750835706421704123865678210543
DLS 4: 012345678586021437154837206327564081240678315463182750835706124701453862678210543
DLS 5: 012345678286051437154837206327564081540678312463182750835706124701423865678210543
...
DLS 12: 012345678127468503506182734485703162378510246831654027764821350650237481243076815
DLS 13: 012345678127438506506182734485703162678510243831654027764821350350267481243076815
DLS 14: 012345678154768203286150437708423165375012846831607524467281350620534781543876012
DLS 15: 012345678154738206286150437708423165675012843831607524467281350320564781543876012
DLS 16: 012345678124738506506182437785403162678510243831657024467821350350264781243076815
Adjacency matrix:
0111111110000000
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
Different CFs set within combinatorial structure:
CF 1: 012345678124768503506182437785403162378510246831657024467821350650234781243076815
CF 2: 012345678120578346765180234246817503487231065374026851531762480853604712608453127
CF 3: 012345678124678530637521084863452701401867253258103467375210846540786312786034125
CF 4: 012345678120578346785160234246817503467231085374026851531782460853604712608453127
CF 5: 012345678124687530637521084863452701401768253258103467375210846540876312786034125
CF 6: 012345678127468503506182734485703162378510246831654027764821350650237481243076815
CF 7: 012345678127438506506182734485703162678510243831654027764821350350267481243076815
CF 8: 012345678124738506506182437785403162678510243831657024467821350350264781243076815
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{8:16}
272. Structure 16N64M16C
DLSs within combinatorial structure:
DLS 1: 012345678120678345587423061654132807345867120873504216201786534436051782768210453
DLS 2: 012345678836201754174856230720584316563012487481637025657120843208473561345768102
DLS 3: 012345678834201756176854230720586314563012487681437025457120863208673541345768102
DLS 4: 012345678836021754174856230720584316563210487481637025657102843208473561345768102
DLS 5: 012345678834021756176854230720586314563210487681437025457102863208673541345768102
...
DLS 12: 012345678153678042387402561604153827240867135875024316531786204426531780768210453
DLS 13: 012345678420687315587123064651432807345768120873501246204876531136054782768210453
DLS 14: 012345678420678315587123064651432807345867120873501246204786531136054782768210453
DLS 15: 012345678453687012387102564601453827240768135875021346534876201126534780768210453
DLS 16: 012345678453678012387102564601453827240867135875021346534786201126534780768210453
Adjacency matrix:
0111111110000000
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
1000000001111111
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
0111111110000000
Different CFs set within combinatorial structure:
CF 1: 012345678120678345587423061654132807345867120873504216201786534436051782768210453
CF 2: 012345678123086745607453182764820351871534206540761823486102537358217460235678014
CF 3: 012345678123076845654803217267581304548130762481627053875264130306752481730418526
CF 4: 012345678123768504506423781248576310675812043837204165764031852450187236381650427
CF 5: 012345678123768504506432781248576310675813042837204165764021853450187236381650427
...
CF 12: 012345678120487563376528041657801234438156702584763120763210485845072316201634857
CF 13: 012345678120678543347516082856431207608254731584763120473120865765082314231807456
CF 14: 012345678120678543347516082856401237638254701584763120473120865765082314201837456
CF 15: 012345678120478536476832105283167450347651082865203714534720861701586243658014327
CF 16: 012345678120487563376518042657801234438256701584763120763120485845072316201634857
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{8:16}
273. Structure 17N16M7C
DLSs within combinatorial structure:
DLS 1: 012345678123867054504283761376512480681730245748156302250471836867024513435608127
DLS 2: 012345678760158432478526013157284306835472160204613857381760524623801745546037281
DLS 3: 012345678123864057507283461346512780681730245478156302250471836864027513735608124
DLS 4: 012345678123867054504283761376512480681730542748126305250471836867054213435608127
DLS 5: 012345678123864057507283461346512780681730542478126305250471836864057213735608124
...
DLS 13: 012345678623814057587203461341562780106738245478156302250471836864027513735680124
DLS 14: 012345678123867054584203761376512480601738542748126305250471836867054213435680127
DLS 15: 012345678123864057587203461346512780601738542478126305250471836864057213735680124
DLS 16: 012345678623817054584203761371562480106738542748126305250471836867054213435680127
DLS 17: 012345678623814057587203461341562780106738542478126305250471836864057213735680124
Adjacency matrix:
01000000000000000
10111111111111111
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123867054504283761376512480681730245748156302250471836867024513435608127
CF 2: 012345678127058463768234015830672541205413786641527830584106327473860152356781204
CF 3: 012345678123864057507283461346512780681730245478156302250471836864027513735608124
CF 4: 012345678123867054504283761376512480681730542748126305250471836867054213435608127
CF 5: 012345678123864057507283461346512780681730542478126305250471836864057213735608124
CF 6: 012345678123867054584203761376512480601738542748126305250471836867054213435680127
CF 7: 012345678123864057587203461346512780601738245478156302250471836864027513735680124
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16]
Multiset of vertices powers:
{1:16, 16:1}
274. Structure 17N16M9C
DLSs within combinatorial structure:
DLS 1: 012345678123570846648137052275603481830416725756284103387062514461758230504821367
DLS 2: 012345678678421350731806425483567102247038516304652781560213847825174063156780234
DLS 3: 012345678124570836648137052275604381830412765756283104487026513361758240503861427
DLS 4: 012345678124580736648137052275604381730412865856273104487026513361758240503861427
DLS 5: 012345678123570846648137052275603481830412765756284103387026514461758230504861327
...
DLS 13: 012345678123580746648137052275603481730416825856274103387062514461758230504821367
DLS 14: 012345678124570836648137052270654381835416720756283104487062513361708245503821467
DLS 15: 012345678124580736648137052270654381735416820856273104487062513361708245503821467
DLS 16: 012345678123570846648137052270653481835416720756284103387062514461708235504821367
DLS 17: 012345678123580746648137052270653481735416820856274103387062514461708235504821367
Adjacency matrix:
01000000000000000
10111111111111111
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123570846648137052275603481830416725756284103387062514461758230504821367
CF 2: 012345678123870465768452013241763850607514382850236741384601527475028136536187204
CF 3: 012345678123580746648137052270653481735416820856274103387062514461708235504821367
CF 4: 012345678123570846648137052270653481835416720756284103387062514461708235504821367
CF 5: 012345678123570846648137052275603481830412765756284103387026514461758230504861327
CF 6: 012345678123580746648137052275603481730412865856274103387026514461758230504861327
CF 7: 012345678123580746648137052275603481730416825856274103387062514461758230504821367
CF 8: 012345678123570846648137052270653481835412760756284103387026514461708235504861327
CF 9: 012345678123580746648137052270653481735412860856274103387026514461708235504861327
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16]
Multiset of vertices powers:
{1:16, 16:1}
275. Structure 17N16M11C
DLSs within combinatorial structure:
DLS 1: 012345678235768401486507132107836524621450783843271065754683210578012346360124857
DLS 2: 012345678356074812621453780468710253870132564507628341185206437743861025234587106
DLS 3: 012345678235768401486570132107836524621457083843201765754683210578012346360124857
DLS 4: 012345678245768301386570142107836524621457083834201765753684210578012436460123857
DLS 5: 012345678635728401486570132107836524261457083843201765754683210578012346320164857
...
DLS 13: 012345678645728301386570142107836524268457013834201765753614280571082436420163857
DLS 14: 012345678235768401486507132107836524628450713843271065754613280571082346360124857
DLS 15: 012345678245768301386507142107836524628450713834271065753614280571082436460123857
DLS 16: 012345678635728401486507132107836524268450713843271065754613280571082346320164857
DLS 17: 012345678645728301386507142107836524268450713834271065753614280571082436420163857
Adjacency matrix:
01000000000000000
10111111111111111
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678235768401486507132107836524621450783843271065754683210578012346360124857
CF 2: 012345678123867045687453120458170263860732514541628307735206481376014852204581736
CF 3: 012345678234768501756283410105832764627450183840671325481507236573016842368124057
CF 4: 012345678234768501756213480105832764627450813840671325481507236573086142368124057
CF 5: 012345678234768501756283410105832764620457183847601325481570236573016842368124057
...
CF 7: 012345678234867501586703412851472063623014785107658324745186230478230156360521847
CF 8: 012345678234867501586073412851402763623714085107658324745186230478230156360521847
CF 9: 012345678234867501586073412851402763628714035107658324745136280473280156360521847
CF 10: 012345678235867401746132580857406123620714835103258764584073216471680352368521047
CF 11: 012345678234867501586703412851472063628014735107658324745136280473280156360521847
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16]
Multiset of vertices powers:
{1:16, 16:1}
276. Structure 17N16M17C
DLSs within combinatorial structure:
DLS 1: 012345678120586743564018237483750126875461302708123564637204851256837410341672085
DLS 2: 012345678758623410486137025567204831301872564134568702243750186825016347670481253
DLS 3: 012345678120586743564018237483750126875461302246173580637204851758632014301827465
DLS 4: 012345678120586743564018237483750126875461302248173560637204851756832014301627485
DLS 5: 012345678120586743564018237483750126875461302746123580637204851258637014301872465
...
DLS 13: 012345678820516743564081237483750126175468302708123564637204851256837410341672085
DLS 14: 012345678820516743564081237483750126175468302246173580637204851758632014301827465
DLS 15: 012345678820516743564081237483750126175468302248173560637204851756832014301627485
DLS 16: 012345678820516743564081237483750126175468302746123580637204851258637014301872465
DLS 17: 012345678820516743564081237483750126175468302748123560637204851256837014301672485
Adjacency matrix:
01000000000000000
10111111111111111
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
01000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120586743564018237483750126875461302708123564637204851256837410341672085
CF 2: 012345678123458760258716034405671823864137205370264581637580142741802356586023417
CF 3: 012345678120586743564018237483750126875461302246173580637204851758632014301827465
CF 4: 012345678120586743564018237483750126875461302248173560637204851756832014301627485
CF 5: 012345678120586743564018237483750126875461302746123580637204851258637014301872465
...
CF 13: 012345678120586743734018256683750124875461302408123567567204831256837410341672085
CF 14: 012345678120687543463150287657423810348762105735018462281506734874231056506874321
CF 15: 012345678120687543463150287657423810348762105735018462281504736876231054504876321
CF 16: 012345678123784065486532710751820346504617823867453102375206481630178254248061537
CF 17: 012345678123784065486532710751820346504617823867453201375106482630278154248061537
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16]
Multiset of vertices powers:
{1:16, 16:1}
277. Structure 17N29M17C
DLSs within combinatorial structure:
DLS 1: 012345678120478563486527130573182406261730854658014327835601742347256081704863215
DLS 2: 012345678735206814804763251261830745526178403347651082183024567658417320470582136
DLS 3: 012345678735206814804763251261830745586172403347651082123084567658417320470528136
DLS 4: 012345678120487563476528130583172406261730854658014327835601742347256081704863215
DLS 5: 012345678120578463586427130473182506261730854658014327835601742347256081704863215
...
DLS 13: 012345678745231806831764250264803715523678041307156482186420537658017324470582163
DLS 14: 012345678745231806831764250264803715583672041307156482126480537658017324470528163
DLS 15: 012345678741236805835764210264801753326578041107653482583420167658017324470182536
DLS 16: 012345678741236805835764210264801753386572041107653482523480167658017324470128536
DLS 17: 012345678834206715705863241268430157186572403347651082523017864651784320470128536
Adjacency matrix:
01100000000000000
10011111110000000
10011111110000000
01100000000000000
01100000001100000
01100000000000000
01100000000000000
01100000000011110
01100000001000001
01100000000011111
00001000100000000
00001000000000000
00000001010000000
00000001010000000
00000001010000000
00000001010000000
00000000110000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478563486527130573182406261730854658014327835601742347256081704863215
CF 2: 012345678123508467764081532830174256547632810358726104681450723405267381276813045
CF 3: 012345678123578460764081532837104256540632817358726104681450723405267381276813045
CF 4: 012345678120487563476528130503172846864730251658014327235806714347651082781263405
CF 5: 012345678120567834358406127583612740801274365467031582735128406246783051674850213
...
CF 13: 012345678120678453645820137563712084208437561381064725736501842874256310457183206
CF 14: 012345678120687453645820137563712084207438561381064725736501842874256310458173206
CF 15: 012345678123604857765018432530871264687432510348726105456180723801257346274563081
CF 16: 012345678123674850765018432537801264680432517348726105456180723801257346274563081
CF 17: 012345678120567834573618240435801762268754103784036521307182456846270315651423087
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 6, 7, 8, 8]
Multiset of vertices powers:
{1:1, 2:10, 4:2, 6:1, 7:1, 8:2}
278. Structure 17N32M17C
DLSs within combinatorial structure:
DLS 1: 012345678120678435867453102483127056348560721751234860234806517605712384576081243
DLS 2: 012345678861704352235681740704236815657013284173428506580172463426857031348560127
DLS 3: 012345678420678135867153402183427056348560721754231860231806547605712384576084213
DLS 4: 012345678420571836508713462163420587346857120784236051231608745875062314657184203
DLS 5: 012345678230678145867152304183427056428560731754231860341806527605714283576083412
...
DLS 13: 012345678420587136807153462563420781346718520784236015235601847178062354651874203
DLS 14: 012345678420571836108753462563420187346817520784236015235608741871062354657184203
DLS 15: 012345678420571836108753462563420187346817520781236045235608714874062351657184203
DLS 16: 012345678420678135867153402683427051348510726754236810236801547105762384571084263
DLS 17: 012345678230678145867152304683427051428510736754236810346801527105764283571083462
Adjacency matrix:
01000000000000000
10111100000000000
01000011100000000
01000011100000000
01000011100000000
01000011100000000
00111100010000000
00111100011111111
00111100001111011
00000011000000000
00000001100000000
00000001100000000
00000001100000000
00000001100000000
00000001000000000
00000001100000000
00000001100000000
Different CFs set within combinatorial structure:
CF 1: 012345678120678435867453102483127056348560721751234860234806517605712384576081243
CF 2: 012345678120487563483716052865124307734652180657208431501863724276031845348570216
CF 3: 012345678127608354645037281531874026278416530860753142786520413403182765354261807
CF 4: 012345678123508764654071283745863021238617450870456312387120546406782135561234807
CF 5: 012345678123487056357068421834650712678532140486271305241806537560714283705123864
...
CF 13: 012345678126457803751830462683502714875263041308174526247618350430726185564081237
CF 14: 012345678124068753376584120438176502857432016605217834580723461241650387763801245
CF 15: 012345678123068754376584120438176502857432016605217843580723461241650387764801235
CF 16: 012345678230176845687432051105687423854023167748561302471208536563714280326850714
CF 17: 012345678123586740407618325784120536350867412835274061261453807678031254546702183
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 10, 12]
Multiset of vertices powers:
{1:2, 2:7, 4:4, 5:2, 10:1, 12:1}
279. Structure 17N65M17C
DLSs within combinatorial structure:
DLS 1: 012345678120568743648210357584731026376854210851673402437026185703482561265107834
DLS 2: 012345678275830461786102543641527830824713056308264715560481327137056284453678102
DLS 3: 012345678786204315175638402824713056641527830453076281237850164360182547508461723
DLS 4: 012345678786201345475638102824713056641527830153076284237850461360482517508164723
DLS 5: 012345678386204517153678402824713056641527830437056281275830164560182743708461325
...
DLS 13: 012345678475830261786104523641527830824713056308462715560281347137056482253678104
DLS 14: 012345678437658201508164327641527830824713056760482513386201745153870462275036184
DLS 15: 012345678475638201708164523641527830824713056360482715586201347137850462253076184
DLS 16: 012345678237658401508162347641527830824713056760284513386401725153870264475036182
DLS 17: 012345678275638401708162543641527830824713056360284715586401327137850264453076182
Adjacency matrix:
01000000000000000
10111111110000000
01000000001111111
01000000001111111
01000000001111111
01000000001111111
01000000001111111
01000000001111111
01000000001111111
01000000001111111
00111111110000000
00111111110000000
00111111110000000
00111111110000000
00111111110000000
00111111110000000
00111111110000000
Different CFs set within combinatorial structure:
CF 1: 012345678120568743648210357584731026376854210851673402437026185703482561265107834
CF 2: 012345678120476835847051263281630457356814720605783142734208516463527081578162304
CF 3: 012345678120486357758260143874152036281637504635724810346508721507813462463071285
CF 4: 012345678120478536734581062301862745865017423258736104476250381647123850583604217
CF 5: 012345678120467835635708412284630157357814260701283546846051723473526081568172304
...
CF 13: 012345678120486357748560123674152830287631504835724016356208741501873462463017285
CF 14: 012345678120486357358260741834752016281637504675124830746508123507813462463071285
CF 15: 012345678120586347574238160351672804748051236486713052863420715207164583635807421
CF 16: 012345678120486357358260741834752016287631504675124830746508123501873462463017285
CF 17: 012345678123478506546083721470861352231756840608237415754602183865124037387510264
Ascending sorted vector of vertices powers:
[1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9]
Multiset of vertices powers:
{1:1, 8:15, 9:1}
280. Structure 18N17M12C
DLSs within combinatorial structure:
DLS 1: 012345678123057846785432160247860531560173482431286705806514327654728013378601254
DLS 2: 012345678635481207804716325763152084247860531120578463581623740378204156456037812
DLS 3: 012345678123057864785623140247860531568172403631204785804516327456738012370481256
DLS 4: 012345678123057864785632140247860531568173402631204785804516327456728013370481256
DLS 5: 012345678523017864785623140247860531168572403631204785804156327456738012370481256
...
DLS 14: 012345678523017864785632140247860531160573482631284705804156327456728013378401256
DLS 15: 012345678123057846785423160247860531560172483431286705806514327654738012378601254
DLS 16: 012345678523017846785423160247860531160572483431286705806154327654738012378601254
DLS 17: 012345678523017846785432160247860531160573482431286705806154327654728013378601254
DLS 18: 012345678687402531803516427564271803421763085148057362735628140370184256256830714
Adjacency matrix:
010000000000000000
101111111111111110
010000000000000001
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
001000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123057846785432160247860531560173482431286705806514327654728013378601254
CF 2: 012345678123057864864512307645820731308671425537406182781263540450738216276184053
CF 3: 012345678123057864785623140247860531568172403631204785804516327456738012370481256
CF 4: 012345678123057846785423160247860531568172403431206785806514327654738012370681254
CF 5: 012345678123057864785623140247860531560172483631284705804516327456738012378401256
...
CF 8: 012345678123057864785632140247860531560173482631284705804516327456728013378401256
CF 9: 012345678123487065786032514247561830860173452431258706654810327508726143375604281
CF 10: 012345678123487065786023514247561830860172453431258706654810327508736142375604281
CF 11: 012345678123487065786023514247561830865172403431208756654810327508736142370654281
CF 12: 012345678231457860546872301870561423608123754724018536367204185153786042485630217
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 16]
Multiset of vertices powers:
{1:16, 2:1, 16:1}
281. Structure 18N18M18C
DLSs within combinatorial structure:
DLS 1: 012345678123057846805432167241860735560173482437286501786514320654728013378601254
DLS 2: 012345678635481207584716320760152483247860531123578064801623745378204156456037812
DLS 3: 012345678123057864805623147241860735560172483637284501784516320456738012378401256
DLS 4: 012345678123057846805423167241860735560172483437286501786514320654738012378601254
DLS 5: 012345678123057864805632147241860735560173482637284501784516320456728013378401256
...
DLS 14: 012345678523017864805623147241860735168572403637204581784156320456738012370481256
DLS 15: 012345678523017846805423167241860735168572403437206581786154320654738012370681254
DLS 16: 012345678523017864805632147241860735168573402637204581784156320456728013370481256
DLS 17: 012345678523017846805432167241860735168573402437206581786154320654728013370681254
DLS 18: 012345678635481207584716320706152483247860531123578064861023745378204156450637812
Adjacency matrix:
010000000000000000
101111111111111110
010000000000000000
010000000000000000
010000000000000000
010000000000000001
010000000000000000
010000000000000001
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
010000000000000000
000001010000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123057846805432167241860735560173482437286501786514320654728013378601254
CF 2: 012345678123750864864512307587604132308176425635028741741263580450837216276481053
CF 3: 012345678123057864805623147241860735560172483637284501784516320456738012378401256
CF 4: 012345678123057846805423167241860735560172483437286501786514320654738012378601254
CF 5: 012345678123057864805632147241860735560173482637284501784516320456728013378401256
...
CF 14: 012345678123460857346508721534782016851637402678124530780256143265071384407813265
CF 15: 012345678123460857346528701534782016851637420678104532780256143265071384407813265
CF 16: 012345678123460857364508721536782014851637402478126530780254163245071386607813245
CF 17: 012345678123460857364528701536782014851637420478106532780254163245071386607813245
CF 18: 012345678123750864864512703587604132708136425675028341341267580450873216236481057
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 16]
Multiset of vertices powers:
{1:14, 2:3, 16:1}
282. Structure 18N24M18C
DLSs within combinatorial structure:
DLS 1: 012345678123706845258670134580462713765834021376521480437218506804157362641083257
DLS 2: 012345678437218506604153287278531064841062753560487312123706845356874120785620431
DLS 3: 012345678437218506504163287278631054841052763650487312123706845365874120786520431
DLS 4: 012345678437218506604183257278531064541062783860457312123706845356874120785620431
DLS 5: 012345678437218506504183267278631054641052783850467312123706845365874120786520431
...
DLS 14: 012345678437218506604153287278531460841062753560487312123706845356870124785624031
DLS 15: 012345678437218506504163287278631450841052763650487312123706845365870124786524031
DLS 16: 012345678437218506604183257278531460541062783860457312123706845356870124785624031
DLS 17: 012345678437218506504183267278631450641052783850467312123706845365870124786524031
DLS 18: 012345678123706845258674130580462713765830421376521084437218506804157362641083257
Adjacency matrix:
011111111111111110
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000000
100000000000000000
100000000000000000
100000000000000000
100000000000000000
100000000000000000
100000000000000000
100000000000000000
100000000000000001
100000000000000001
100000000000000001
100000000000000001
011110000000011110
Different CFs set within combinatorial structure:
CF 1: 012345678123706845258670134580462713765834021376521480437218506804157362641083257
CF 2: 012345678126087543743526180578413062831652407654708321480261735365870214207134856
CF 3: 012345678230468715386712504821503467573124086458637120164270853607851342745086231
CF 4: 012345678123486705687102453435867021876530142350214867701623584264758310548071236
CF 5: 012345678230468715386712504821503467578124036453687120164270853607851342745036281
...
CF 14: 012345678123568704804617235245783016670152843358406127581274360467031582736820451
CF 15: 012345678230618754165724083604852137781460325458137206527083461843276510376501842
CF 16: 012345678123786405654810237706521384870163542385407126467032851238654710541278063
CF 17: 012345678230716854548237160687104532174568203451072386863450721325681047706823415
CF 18: 012345678123706845258674130580462713765830421376521084437218506804157362641083257
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 8, 16]
Multiset of vertices powers:
{1:8, 2:8, 8:1, 16:1}
283. Structure 18N28M9C
DLSs within combinatorial structure:
DLS 1: 012345678120486753384571206765123480843762015657018342201837564576204831438650127
DLS 2: 012345678243817560675183024308651247567438102830572416184026753421760385756204831
DLS 3: 012345678243817560756183024308571246675438102830762415184026753421650387567204831
DLS 4: 012345678120486753384561207675123480843672015756018342201837564567204831438750126
DLS 5: 012345678120486753834571206765123480348762015657018342201837564576204831483650127
...
DLS 14: 012345678538104762865431207674213580120576843746028351201867435357682014483750126
DLS 15: 012345678483750216756213480348562107201837564834671025120486753675028341567104832
DLS 16: 012345678483750216756218430348562107201837564834671025120486753675023841567104382
DLS 17: 012345678483750126756128430348561207201837564834672015120486753675013842567204381
DLS 18: 012345678483710526756128430348561207205837164834672015120486753671053842567204381
Adjacency matrix:
011000000000000000
100111000000000000
100111110000000000
011000000000000000
011000000000000000
011000001110000000
001000000000000000
001000001110000000
000001010000000000
000001010001110000
000001010000110000
000000000100001110
000000000110000000
000000000110001111
000000000001010000
000000000001010000
000000000001010000
000000000000010000
Different CFs set within combinatorial structure:
CF 1: 012345678120486753384571206765123480843762015657018342201837564576204831438650127
CF 2: 012345678123687540567431082745813206801254763458106327386072415670528134234760851
CF 3: 012345678123756804465807231706124583348570162250638417871462350637281045584013726
CF 4: 012345678120486753384561207675123480843672015756018342201837564567204831438750126
CF 5: 012345678120486753834571206765123480348762015657018342201837564576204831483650127
CF 6: 012345678120486753756123480874561302348672015635018247483750126567204831201837564
CF 7: 012345678120487536347568201735624180804152367586031724461703852273816045658270413
CF 8: 012345678120568743583476012457182360246051837835607124761823405674230581308714256
CF 9: 012345678123704865381467520756810432648532017805176243564023781470281356237658104
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 6, 6]
Multiset of vertices powers:
{1:2, 2:8, 4:4, 5:2, 6:2}
284. Structure 18N32M5C
DLSs within combinatorial structure:
DLS 1: 012345678120478365573180426861523047786214503458736210645802731304657182237061854
DLS 2: 012345678357286140264701583528637401470123856143058762781460325836572014605814237
DLS 3: 012345678357286140264701583528637401470123865143068752781450326836572014605814237
DLS 4: 012345678180524367873160254641273085725618403256437810467802531308756142534081726
DLS 5: 012345678170862354683170425241583067825416703567234810456708231304657182738021546
...
DLS 14: 012345678143658027821063745650721384765834210287406531476512803304287156538170462
DLS 15: 012345678123478065571083426860521347786234501458716230645802713304657182237160854
DLS 16: 012345678183524067871063254640271385725638401256417830467802513308756142534180726
DLS 17: 012345678173862054681073425240581367825436701567214830456708213304657182738120546
DLS 18: 012345678143658027821063745650721384765834201287416530476502813304287156538170462
Adjacency matrix:
011000000000000000
100111111111111111
100111111111111111
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478365573180426861523047786214503458736210645802731304657182237061854
CF 2: 012345678120468357578216034364572801201637485837154260456801723643780512785023146
CF 3: 012345678120768435473180256736854102804576321567021843241603587358412760685237014
CF 4: 012345678120468735743180256236854107804576321567021843471603582358217460685732014
CF 5: 012345678123478065571083426860521347786234501458716230645802713304657182237160854
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 16, 16]
Multiset of vertices powers:
{2:16, 16:2}
285. Structure 18N32M9C
DLSs within combinatorial structure:
DLS 1: 012345678120468357785014263436870512201637485857126034364581720578203146643752801
DLS 2: 012345678875630421643728105108254763587462310364501287250173846436817052721086534
DLS 3: 012345678875630421463728105108254763587462310346501287250173846634817052721086534
DLS 4: 012345678875630421643728105108254736587462310364501287250176843436817052721083564
DLS 5: 012345678875630421463728105108254736587462310346501287250176843634817052721083564
...
DLS 14: 012345678875630421634857012257103846120468357463782105781026534346571280508214763
DLS 15: 012345678875630421634857012257103864120468357463782105781024536346571280508216743
DLS 16: 012345678875630421364857012257103846120468357436782105781026534643571280508214763
DLS 17: 012345678875630421364857012257103864120468357436782105781024536643571280508216743
DLS 18: 012345678120468357785016243634870512201637485857124036346581720578203164463752801
Adjacency matrix:
011111111111111110
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
100000000000000001
011111111111111110
Different CFs set within combinatorial structure:
CF 1: 012345678120468357785014263436870512201637485857126034364581720578203146643752801
CF 2: 012345678230478561654821703785632014867013452348567120573180246106254387421706835
CF 3: 012345678230157864684731025578623410407812536356478201145206783821064357763580142
CF 4: 012345678230478561154826703785632014867013452348567120573180246601254387426701835
CF 5: 012345678230157864684731025571623480407812536356478201845206713128064357763580142
CF 6: 012345678230587164684731025175623480407152836356478201841206753528064317763810542
CF 7: 012345678230587164684731025178623450407152836356478201541206783825064317763810542
CF 8: 012345678230178546156824703785432061867013452348567120573680214401256387624701835
CF 9: 012345678230178546456821703785432061867013452348567120573680214104256387621704835
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 16, 16]
Multiset of vertices powers:
{2:16, 16:2}
286. Structure 18N32M10C
DLSs within combinatorial structure:
DLS 1: 012345678230168745674582301567810423845726130123657084481203567356074812708431256
DLS 2: 012345678678251034126873540735482106580617423341028765207564381864130257453706812
DLS 3: 012345678568271034127836540653482107780513426341028765206754381874160253435607812
DLS 4: 012345678230168745674582301567810423843026157125637084481273560356704812708451236
DLS 5: 012345678230168745674582301567810423843726150125637084481203567356074812708451236
...
DLS 14: 012345678230486715871562304567810423643728150425637081184203567356071842708154236
DLS 15: 012345678230186745874562301567810423645028137123657084481273560356704812708431256
DLS 16: 012345678230186745874562301567810423645728130123657084481203567356074812708431256
DLS 17: 012345678230486715871562304567810423645028137423657081184273560356701842708134256
DLS 18: 012345678230486715871562304567810423645728130423657081184203567356071842708134256
Adjacency matrix:
011000000000000000
100111111111111111
100111111111111111
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678230168745674582301567810423845726130123657084481203567356074812708431256
CF 2: 012345678123864057687250413560487231854631720738106542376528104405712386241073865
CF 3: 012345678123864057456280713840756231584637102738421560371508426605172384267013845
CF 4: 012345678230168745674582301567810423843026157125637084481273560356704812708451236
CF 5: 012345678230168745674582301567810423843726150125637084481203567356074812708451236
CF 6: 012345678230186745467823501643517820578460312854271036781054263105632487326708154
CF 7: 012345678230178564547806231456237810684752103873461052761083425105624387328510746
CF 8: 012345678230168745674582301567810423845026137123657084481273560356704812708431256
CF 9: 012345678230186745467813502643527810578460321854271036781054263105632487326708154
CF 10: 012345678230178564547836201456207813684752130873461052761083425105624387328510746
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 16, 16]
Multiset of vertices powers:
{2:16, 16:2}
287. Structure 18N32M18C
DLSs within combinatorial structure:
DLS 1: 012345678123670854567184302835417026304761285756028431481203567648532710270856143
DLS 2: 012345678265807143851426037643572810728630451307184265136058724470213586584761302
DLS 3: 012345678265807143821456037643572810758630421307184265136028754470213586584761302
DLS 4: 012345678527630814163504782871453026384761205756028431405287163648172350230816547
DLS 5: 012345678523670814167504382831457026384761205756028431405283167648132750270816543
...
DLS 14: 012345678127630854563184702875413026304761285756028431481207563648572310230856147
DLS 15: 012345678547630812163582704871253046304761285756028431285407163628174350430816527
DLS 16: 012345678543670812167582304831257046304761285756028431285403167628134750470816523
DLS 17: 012345678147630852563182704875213046304761285756028431281407563628574310430856127
DLS 18: 012345678143670852567182304835217046304761285756028431281403567628534710470856123
Adjacency matrix:
011000000000000000
100111111111111111
100111111111111111
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
011000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123670854567184302835417026304761285756028431481203567648532710270856143
CF 2: 012345678123784560386157024650421387548073216401568732764832105837206451275610843
CF 3: 012345678123480765856723104701864532548072316467531280380156427634207851275618043
CF 4: 012345678123784560356127084580461237648072315461538702704853126837206451275610843
CF 5: 012345678123784560356127084508461237640872315461538702784053126837206451275610843
...
CF 14: 012345678127056834365481702736820451504167283873514026481702365648273510250638147
CF 15: 012345678123760845861503724740831562674052381438276150256187403507418236385624017
CF 16: 012345678123760845861503724740831562674052381437286150256178403508417236385624017
CF 17: 012345678120567843861053724458672130674230581745108362236781405307814256583426017
CF 18: 012345678120567843861053724457682130674230581745108362236871405308714256583426017
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 16, 16]
Multiset of vertices powers:
{2:16, 16:2}
288. Structure 18N40M18C
DLSs within combinatorial structure:
DLS 1: 012345678123486705485671230340827156271560843607134582754208361836752014568013427
DLS 2: 012345678846702513251867304783650241130278465568413027475021836324186750607534182
DLS 3: 012345678846702513251867304783610245530278461168453027475021836324186750607534182
DLS 4: 012345678123486705485671230240837156371560842607124583754208361836752014568013427
DLS 5: 012345678123486705485671230270134856347560182604728513851207364736852041568013427
...
DLS 14: 012345678523186740485670231341827506274061853607534182750218364836702415168453027
DLS 15: 012345678840762513251807364783610245536278401168453027475021836324186750607534182
DLS 16: 012345678840762513251807364783650241136278405568413027475021836324186750607534182
DLS 17: 012345678846702513251867304784650231130278465568413027375021846423186750607534182
DLS 18: 012345678846702513251867304784610235530278461168453027375021846423186750607534182
Adjacency matrix:
011000000000000000
100111111111110000
100111111111110000
011000000000000000
011000000000001100
011000000000001100
011000000000000011
011000000000001100
011000000000000000
011000000000001100
011000000000001100
011000000000000011
011000000000001100
011000000000000000
000011010110100000
000011010110100000
000000100001000000
000000100001000000
Different CFs set within combinatorial structure:
CF 1: 012345678123486705485671230340827156271560843607134582754208361836752014568013427
CF 2: 012345678123487560486750132561824307648073215307561824750132486834206751275618043
CF 3: 012345678123407865408761532865124307540873216387056124751632480634280751276518043
CF 4: 012345678123486705485671230240837156371560842607124583754208361836752014568013427
CF 5: 012345678120568347287436015463182750346751802805673124571820463634207581758014236
...
CF 14: 012345678123407865308761524765124380540873216487056132851632407634280751276518043
CF 15: 012345678123087546465138027248751360704863215681204753537612804850476132376520481
CF 16: 012345678123487560486750132561834207648072315307561824750123486834206751275618043
CF 17: 012345678123487560406758132561824307648073215387561024750132486834206751275610843
CF 18: 012345678123407865408761532856124307540873216387056124761532480634280751275618043
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 12, 12]
Multiset of vertices powers:
{2:6, 4:8, 6:2, 12:2}
289. Structure 18N42M9C
DLSs within combinatorial structure:
DLS 1: 012345678120473856654187302738520164387264510465718023801632745546801237273056481
DLS 2: 012345678645738021738520146456187302271056483127603854564871230803412765380264517
DLS 3: 012345678465738021738520164654187302271056483127403856546871230803612745380264517
DLS 4: 012345678645738021378520146456183702231056487123607854564871230807412365780264513
DLS 5: 012345678465738021378520164654183702231056487123407856546871230807612345780264513
...
DLS 14: 012345678120473856654107382738520164387264510465718023801632745546081237273856401
DLS 15: 012345678127403856654187302738520164380264517465718023801632745546871230273056481
DLS 16: 012345678120473856654107382738520164387264510463718025801652743546081237275836401
DLS 17: 012345678120473856654187302738520164387264510463718025801652743546801237275036481
DLS 18: 012345678127403856654187302738520164380264517463718025801652743546871230275036481
Adjacency matrix:
011111111100000000
100000000011111000
100000000011111111
100000000011010000
100000000011010000
100000000001101000
100000000001101011
100000000000001011
100000000000000000
100000000000001011
011110000000000000
011111100000000000
011001100000000000
011110000000000000
011001110100000000
001000000000000000
001000110100000000
001000110100000000
Different CFs set within combinatorial structure:
CF 1: 012345678120473856654187302738520164387264510465718023801632745546801237273056481
CF 2: 012345678120478536536827401754160283387251064845603712401736825678512340263084157
CF 3: 012345678120573846643701582364817025587462310758024163801256734436180257275638401
CF 4: 012345678120473856654107382738520164387264510465718023801632745546081237273856401
CF 5: 012345678123468507508271463740526831671034285465187320837602154356810742284753016
CF 6: 012345678123768504547280316754612830236857041368401725801523467475036182680174253
CF 7: 012345678120473856654187302738520164387264510463718025801652743546801237275036481
CF 8: 012345678120473856654107382738520164387264510463718025801652743546081237275836401
CF 9: 012345678124738506457162380835607124286051437360284751701423865543876012678510243
Ascending sorted vector of vertices powers:
[1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 9, 9]
Multiset of vertices powers:
{1:2, 4:10, 6:4, 9:2}
290. Structure 18N42M9C
DLSs within combinatorial structure:
DLS 1: 012345678123470856651287043835602417584736102768124530346058721270561384407813265
DLS 2: 012345678784632105465021387628174530273460851830257416507813264351786042146508723
DLS 3: 012345678784632105465021387628174530273468051830257416507813264351706842146580723
DLS 4: 012345678784632105465021387628174530270463851803257416537810264351786042146508723
DLS 5: 012345678784632105365021487628173540273460851840257316507814263451786032136508724
...
DLS 14: 012345678123470856681257043530682417854736120768104532346528701275061384407813265
DLS 15: 012345678123470856651287043830652417584736102768124530346508721275061384407813265
DLS 16: 012345678123470856681257043530682417854736102768124530346508721275061384407813265
DLS 17: 012345678120473856651287043803652417584736102768124530346508721275061384437810265
DLS 18: 012345678120473856681257043503682417854736102768124530346508721275061384437810265
Adjacency matrix:
011111111100000000
100000000011111111
100000000000111100
100000000011111111
100000000000111100
100000000000111100
100000000000001000
100000000000001010
100000000000001000
100000000000001000
010100000000000000
010100000000000000
011111000000000000
011111000000000000
011111111100000000
011111000000000000
010100010000000000
010100000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123470856651287043835602417584736102768124530346058721270561384407813265
CF 2: 012345678123470856651287043830652417584736102768124530346508721275061384407813265
CF 3: 012345678123470856681257043530682417854736102768124530346508721275061384407813265
CF 4: 012345678123470856651287043830652417584736120768104532346528701275061384407813265
CF 5: 012345678123470856681257043530682417854736120768104532346528701275061384407813265
CF 6: 012345678120473856651287043803652417584736120768104532346528701275061384437810265
CF 7: 012345678120473856651287043803652417584736102768124530346508721275061384437810265
CF 8: 012345678120473856681257043503682417854736120768104532346528701275061384437810265
CF 9: 012345678120473856681257043503682417854736102768124530346508721275061384437810265
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 3, 3, 5, 5, 5, 5, 5, 5, 9, 9, 9, 9]
Multiset of vertices powers:
{2:6, 3:2, 5:6, 9:4}
291. Structure 18N44M16C
DLSs within combinatorial structure:
DLS 1: 012345678123870564847132056485627310536418702760254183674503821251086437308761245
DLS 2: 012345678276581340635418702708152463127834056354026817841760235460273581583607124
DLS 3: 012345678276581340635418702807152463128734056354026817741860235460273581583607124
DLS 4: 012345678276581340635418702708162453127834065354026817841750236460273581583607124
DLS 5: 012345678276581340635418702807162453128734065354026817741850236460273581583607124
...
DLS 14: 012345678127830465853172046584607312346718520760254183675423801231086754408561237
DLS 15: 012345678127830465853172046584607312348716520760254183675423801231068754406581237
DLS 16: 012345678123870564847132056485627310538416702760254183674503821251068437306781245
DLS 17: 012345678127830465853172046584627310346718502760254183675403821231086754408561237
DLS 18: 012345678127830465853172046584627310348716502760254183675403821231068754406581237
Adjacency matrix:
011111111110000000
100000000001000000
100000000001000000
100000000001000000
100000000001000000
100000000001111111
100000000001111111
100000000001111111
100000000001000000
100000000001111111
100000000001000000
011111111110000000
000001110100000000
000001110100000000
000001110100000000
000001110100000000
000001110100000000
000001110100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123870564847132056485627310536418702760254183674503821251086437308761245
CF 2: 012345678123576804657014382548631720264857031730268415386420157875103246401782563
CF 3: 012345678123576804657014382584631720268457031730268415346820157875103246401782563
CF 4: 012345678120473865638527104764180532847651320385206417253064781571832046406718253
CF 5: 012345678123507864586734102840162735364871520657028341705283416238416057471650283
...
CF 12: 012345678124038765835271046460752183346817502587426310673504821251680437708163254
CF 13: 012345678120576843546718032867403125738154260485231706201867354374620581653082417
CF 14: 012345678123870564847132056485627310538416702760254183674503821251068437306781245
CF 15: 012345678124038765835271046460752183346817520587406312673524801251680437708163254
CF 16: 012345678120486735435108267754610823863274150378561402201857346546723081687032514
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 10, 10]
Multiset of vertices powers:
{2:6, 4:6, 8:4, 10:2}
292. Structure 18N44M18C
DLSs within combinatorial structure:
DLS 1: 012345678231487065154860327875624130683572401367108254740213586428056713506731842
DLS 2: 012345678827560314508136742763402851246751083481073526374628105135287460650814237
DLS 3: 012345678827560314508126743763402851346751082481073526274638105135287460650814237
DLS 4: 012345678431827560145263087370684125658470231267158304783012456824506713506731842
DLS 5: 012345678431827560645213087370684125158470236267158304783062451824506713506731842
...
DLS 14: 012345678431827560645213087370684125158470236267108354783562401824056713506731842
DLS 15: 012345678431287560145863027370624185658470231267108354783512406824056713506731842
DLS 16: 012345678431827560145263087370684125658470231267108354783512406824056713506731842
DLS 17: 012345678431287560645813027370624185158470236267158304783062451824506713506731842
DLS 18: 012345678431287560145863027370624185658470231267158304783012456824506713506731842
Adjacency matrix:
011000000000000000
100111110000000000
100111110000000000
011000001111000000
011000001111000000
011000000000000000
011000000000000000
011000000000000000
000110000000111111
000110000000111111
000110000000111111
000110000000111111
000000001111000000
000000001111000000
000000001111000000
000000001111000000
000000001111000000
000000001111000000
Different CFs set within combinatorial structure:
CF 1: 012345678231487065154860327875624130683572401367108254740213586428056713506731842
CF 2: 012345678231570846584106723826713054705468312347281560460857231653024187178632405
CF 3: 012345678230581764456723180801264537348672015675018342783150426127406853564837201
CF 4: 012345678123586047367408251748623510804157362486031725251764803570812436635270184
CF 5: 012345678123586047307468251748623510864157302486031725251704863570812436635270184
...
CF 14: 012345678123586047307468251248673510864157302486031725751204863570812436635720184
CF 15: 012345678123568047574830162467182350246751803805673421380426715631207584758014236
CF 16: 012345678123586047367408251248673510804157362486031725751264803570812436635720184
CF 17: 012345678123568047504827163467182350346751802875603421280436715631270584758014236
CF 18: 012345678123568047504837162467182350246751803875603421380426715631270584758014236
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8]
Multiset of vertices powers:
{2:4, 4:6, 6:4, 8:4}
293. Structure 18N59M9C
DLSs within combinatorial structure:
DLS 1: 012345678123478506486207135570182364647051283801763452734526810265830741358614027
DLS 2: 012345678731206845804173256265830417358614720126587034483762501570428163647051382
DLS 3: 012345678731206845804173256265830417358614720186527034423768501570482163647051382
DLS 4: 012345678731506842804173526265830417328614750186257034453768201570482163647021385
DLS 5: 012345678731206854805173246264830517358614720126487035583762401470528163647051382
...
DLS 14: 012345678123478506486207135570162384847051263601783452734526810265830741358614027
DLS 15: 012345678423178506186207435570462381847051263604783152731526840265830714358614027
DLS 16: 012345678423178506186204735540762381874051263607483152731526840265830417358617024
DLS 17: 012345678731206845504173286265830417358614720186527034423768501870452163647081352
DLS 18: 012345678731206845504173286365820417258614730186537024423768501870452163647081352
Adjacency matrix:
011111110000000000
100000001111100000
100000001111111100
100000001111111100
100000001111000000
100000001111011000
100000000101111100
100000000101011000
011111000000000000
011111110000000011
011111000000000010
011111110000000011
011100100000000011
001101110000000000
001101110000000011
001100100000000011
000000000111101100
000000000101101100
Different CFs set within combinatorial structure:
CF 1: 012345678123478506486207135570182364647051283801763452734526810265830741358614027
CF 2: 012345678123608745708453126485160237650271384867534012346827501531782460274016853
CF 3: 012345678128453706843607125781534062435760281670218354567182430254076813306821547
CF 4: 012345678126738540348561027701486253834257106657103482483620715570812364265074831
CF 5: 012345678120487356265874130587132064734061285356728401843506712608213547471650823
CF 6: 012345678120487563683701425257160384874653102465278031341826750536012847708534216
CF 7: 012345678120487563683721405257160384874653120465278031341806752536012847708534216
CF 8: 012345678124587360278061543685704231460138752843256107351870426507623814736412085
CF 9: 012345678120487563683701425357160284874653102465278031241836750536012847708524316
Ascending sorted vector of vertices powers:
[5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 9, 9, 9, 9]
Multiset of vertices powers:
{5:6, 6:4, 7:4, 9:4}
294. Structure 18N61M4C
DLSs within combinatorial structure:
DLS 1: 012345678123058764305261487487612503578436120846107235230574816651783042764820351
DLS 2: 012345678568423107683057214106734825457812036231678540725106483874260351340581762
DLS 3: 012345678468523107684057213106734825347812056251678340723106584875260431530481762
DLS 4: 012345678560483127623857014106734285457210836231678540785126403874062351348501762
DLS 5: 012345678460583127624857013106734285347210856251678340783126504875062431538401762
...
DLS 14: 012345678354018762201463587487652301178536240826107453530274816643781025765820134
DLS 15: 012345678325018764508263147847652301471836520186407253230571486653784012764120835
DLS 16: 012345678327018564578263140840672351451836027186457203235701486603584712764120835
DLS 17: 012345678327018564571263480480672351158436027846157203235704816603581742764820135
DLS 18: 012345678160583247624857013206731485347120856451678320783416502875062134538204761
Adjacency matrix:
011111111000000000
100000000111110000
100000000111110000
100000000111110000
100000000111111110
100000000100101110
100000000011111110
100000000100101110
100000000100101110
011111011000000001
011110100000000001
011110100000000001
011111111000000001
011110100000000001
000011111000000001
000011111000000001
000011111000000001
000000000111111110
Different CFs set within combinatorial structure:
CF 1: 012345678123058764305261487487612503578436120846107235230574816651783042764820351
CF 2: 012345678123604857435260781568732410287513046654078132706481325840157263371826504
CF 3: 012345678120473856345028761468751032286537410871206543734682105503164287657810324
CF 4: 012345678124583760367108425571860243846017352638254017483726501250671834705432186
Ascending sorted vector of vertices powers:
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 9, 9]
Multiset of vertices powers:
{6:12, 8:4, 9:2}
295. Structure 18N66M18C
DLSs within combinatorial structure:
DLS 1: 012345678120467835235708416784630152357814260601283547846051723473526081568172304
DLS 2: 012345678784630512123567084468172305846051723570426831357814260235708146601283457
DLS 3: 012345678684230517163572084478126305846051723520467831357814260735608142201783456
DLS 4: 012345678781630542423567081168472305846051723570126834357814260235708416604283157
DLS 5: 012345678681230547463572081178426305846051723520167834357814260735608412204783156
...
DLS 14: 012345678120567834234708516785630142357814260601283457846051723573426081468172305
DLS 15: 012345678168572304784630512605283147357814260231708456846051723520467831473126085
DLS 16: 012345678160572834734608512685230147357814260201783456846051723523467081478126305
DLS 17: 012345678237108465148567302450712836826051743573426081361874250604283517785630124
DLS 18: 012345678287130465143567082458712306826051743570426831361874250634208517705683124
Adjacency matrix:
011111111000000000
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
011111111000000000
011111111000000000
011111111000000000
011111111000000011
011111111000000000
011111111000000000
011111111000000000
000000000000100000
000000000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678120467835235708416784630152357814260601283547846051723473526081568172304
CF 2: 012345678120478536734581062307862145865017423251736804476250381648123750583604217
CF 3: 012345678120467835346851720635780142857014263781203456204638517463572081578126304
CF 4: 012345678120487536834571062307862145765018423251736804476250381648123750583604217
CF 5: 012345678120476853548721306734680125856014732675203481207138564361857240483562017
...
CF 14: 012345678120567834234708516785630142357814260601283457846051723573426081468172305
CF 15: 012345678120476835856014723567821304341758260475263081734680152208137546683502417
CF 16: 012345678120486357748560123874152036287631504635724810356208741501873462463017285
CF 17: 012345678120567834674830521258674310563012487347208165836451702401783256785126043
CF 18: 012345678120567834634850721278634510367012485745208163856471302401783256583126047
Ascending sorted vector of vertices powers:
[1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10]
Multiset of vertices powers:
{1:2, 8:15, 10:1}
296. Structure 18N68M9C
DLSs within combinatorial structure:
DLS 1: 012345678120476853854610732673502481568731240347128506736084125201857364485263017
DLS 2: 012345678247158306568731240485263017124670853830416725301827564756084132673502481
DLS 3: 012345678547138206368721540485263017134670825850416732201857364726084153673502481
DLS 4: 012345678247158306568731240485263017824670153130486725301827564756014832673502481
DLS 5: 012345678547138206368721540485263017834670125150486732201857364726014853673502481
...
DLS 14: 012345678820416753754680132673502481261837540348751206136074825507128364485263017
DLS 15: 012345678824610753756084132673502481541837206308721564130476825267158340485263017
DLS 16: 012345678820416753754680132673502481561837240348721506136074825207158364485263017
DLS 17: 012345678247158306568731240485263017104672853830416725321807564756084132673520481
DLS 18: 012345678247158306568731240485263017804672153130486725321807564756014832673520481
Adjacency matrix:
011111111000000000
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
011111111000000000
011111111000000000
011111111000000000
011111111000000000
011111111000000011
011111111000000000
011111111000000011
000000000000010100
000000000000010100
Different CFs set within combinatorial structure:
CF 1: 012345678120476853854610732673502481568731240347128506736084125201857364485263017
CF 2: 012345678120476835347851260735680142856014723281703456604238517463527081578162304
CF 3: 012345678120567834846051723284730156357814260601283547735608412563472081478126305
CF 4: 012345678120467835846051723285730146357814260601283457734608512463572081578126304
CF 5: 012345678120478536764581023657832104835017462301726845476250381248163750583604217
CF 6: 012345678120486735836074152548127360367851204475263081754610823201738546683502417
CF 7: 012345678120476853854610732673502481268731540347158206736084125501827364485263017
CF 8: 012345678234708516627581403540162837186257340478036125803674251365410782751823064
CF 9: 012345678120486735347851260835670142756014823281703456604238517463527081578162304
Ascending sorted vector of vertices powers:
[2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10]
Multiset of vertices powers:
{2:2, 8:14, 10:2}
297. Structure 18N68M18C
DLSs within combinatorial structure:
DLS 1: 012345678120487536734652180471836052658270413583061724865124307347508261206713845
DLS 2: 012345678486031725865124307358270416201763854640587231734652180573816042127408563
DLS 3: 012345678476831025865124307350287416281063754647508231734652180503716842128470563
DLS 4: 012345678486013725865124307358270416203761854640587231734652180571836042127408563
DLS 5: 012345678476813025865124307350287416283061754647508231734652180501736842128470563
...
DLS 14: 012345678150287436734652180571836024648570213283061745865124307327408561406713852
DLS 15: 012345678358207461734652180576813024140578236281036745865124307627480513403761852
DLS 16: 012345678350287461734652180576813024148570236281036745865124307627408513403761852
DLS 17: 012345678436871025865124703750283416281067354647508231374652180503716842128430567
DLS 18: 012345678236871054865124703720483516581067342657208431374652180403716825148530267
Adjacency matrix:
011111111000000000
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
100000000111111100
011111111000000000
011111111000000000
011111111000000000
011111111000000011
011111111000000011
011111111000000000
011111111000000000
000000000000110000
000000000000110000
Different CFs set within combinatorial structure:
CF 1: 012345678120487536734652180471836052658270413583061724865124307347508261206713845
CF 2: 012345678120463857463758021287634105375816240501287436846072513634501782758120364
CF 3: 012345678120453867346872510458760321501234786763128054634587102875016243287601435
CF 4: 012345678120567834765834021301482756573618240284756103846270315657103482438021567
CF 5: 012345678120453867346872510458760321581234706763128054634507182875016243207681435
...
CF 14: 012345678123784560765421083601852734857236401480167325234608157376510842548073216
CF 15: 012345678123586047568704321685470132874061253407213586231658704356827410740132865
CF 16: 012345678123506847287650134601473582354867210435218706740182365876021453568734021
CF 17: 012345678120463857538076421873501264241630785465287310386754102607128543754812036
CF 18: 012345678123487065837650124785164302204836751651208437460721583376512840548073216
Ascending sorted vector of vertices powers:
[2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10]
Multiset of vertices powers:
{2:2, 8:14, 10:2}
298. Structure 18N81M9C
DLSs within combinatorial structure:
DLS 1: 012345678120687435543876012786534120851462307367108254435210786678021543204753861
DLS 2: 012345678354102867678210543867453201185624730436087125201876354543768012720531486
DLS 3: 012345678254103867678210543867452301185634720426087135301876254543768012730521486
DLS 4: 012345678354102867678210543867453201135624780486037125201876354543768012720581436
DLS 5: 012345678254103867678210543867452301125634780486027135301876254543768012730581426
...
DLS 14: 012345678120587436543876012785634120801452367357168204436210785678021543264703851
DLS 15: 012345678120587436543876012785634120861752304354108267436210785678021543207463851
DLS 16: 012345678120687435543876012786534120851762304364108257435210786678021543207453861
DLS 17: 012345678120687435743856012586734120871562304364108257437210586658021743205473861
DLS 18: 012345678120587436543876012785634120861452307357108264436210785678021543204763851
Adjacency matrix:
011111111100000000
100000000011111111
100000000011111111
100000000011111111
100000000011111111
100000000011111111
100000000011111111
100000000011111111
100000000011111111
100000000011111111
011111111100000000
011111111100000000
011111111100000000
011111111100000000
011111111100000000
011111111100000000
011111111100000000
011111111100000000
Different CFs set within combinatorial structure:
CF 1: 012345678120687435543876012786534120851462307367108254435210786678021543204753861
CF 2: 012345678120568743658734201583421067741056832435687120867210354206873415374102586
CF 3: 012345678120687435543876012786534120801462357367158204435210786678021543254703861
CF 4: 012345678120568743658734201583471062241056837435687120867210354706823415374102586
CF 5: 012345678120687435743856012586734120871562304364108257437210586658021743205473861
CF 6: 012345678120687435543876012786534120851762304364108257435210786678021543207453861
CF 7: 012345678120568743658734201586421037741053862435687120867210354203876415374102586
CF 8: 012345678120687435543876012786534120801762354364158207435210786678021543257403861
CF 9: 012345678120568743658734201586471032241053867435687120867210354703826415374102586
Ascending sorted vector of vertices powers:
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9]
Multiset of vertices powers:
{9:18}
299. Structure 19N22M19C
DLSs within combinatorial structure:
DLS 1: 012345678120473865548627130764180352637851204385206417803564721271038546456712083
DLS 2: 012345678271068543754180326538627104863714052406532781340251867125876430687403215
DLS 3: 012345678120473865548627130764180352637851204385206417803514726276038541451762083
DLS 4: 012345678120473865548627130764180352637851204385206417203514786876032541451768023
DLS 5: 012345678120473865548627130764180352637851204385206417203564781871032546456718023
...
DLS 15: 012345678120473865548627130764180352637851204385206417853064721271538046406712583
DLS 16: 012345678120453867548627130764180352635871204387206415873014526256738041401562783
DLS 17: 012345678120453867548627130764180352635871204387206415873064521251738046406512783
DLS 18: 012345678281760543754108326530672184863014752426537801347851260105286437678423015
DLS 19: 012345678281760543754108326538672104863014752426537081347851260105286437670423815
Adjacency matrix:
0100000000000000000
1011111111111111100
0100000000000000000
0100000000000000000
0100000000000000000
0100000000000000000
0100000000000000000
0100000000000000000
0100000000000000000
0100000000000000011
0100000000000000000
0100000000000000010
0100000000000000000
0100000000000000011
0100000000000000000
0100000000000000010
0100000000000000000
0000000001010101000
0000000001000100000
Different CFs set within combinatorial structure:
CF 1: 012345678120473865548627130764180352637851204385206417803564721271038546456712083
CF 2: 012345678123607845356820714840752163785136420268514037431278506507461382674083251
CF 3: 012345678120456837538627104764180352341578260687203415276014583853762041405831726
CF 4: 012345678120453867346708152637820541581674023875261304703512486254186730468037215
CF 5: 012345678120457836473528160586172403834760251658014327205836714347601582761283045
...
CF 15: 012345678120473865548627130764180352637851204385206417853064721271538046406712583
CF 16: 012345678120453867346728150637810542584176023875261304763502481251084736408637215
CF 17: 012345678120453867367180245483627510658712403745068132874506321231874056506231784
CF 18: 012345678123687045306728514547802163758136420265014837431250786870461352684573201
CF 19: 012345678123578046504826317387610254268751403456237180731402865870164532645083721
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 16]
Multiset of vertices powers:
{1:12, 2:3, 3:2, 4:1, 16:1}
300. Structure 19N26M19C
DLSs within combinatorial structure:
DLS 1: 012345678120473865538627104647180352764851230385206417253014786876532041401768523
DLS 2: 012345678271068543764180352853627104538714026406532781340251867125876430687403215
DLS 3: 012345678781260543264108357853672104538014726426537081347851260105786432670423815
DLS 4: 012345678281760543764108352853672104538014726426537081347851260105286437670423815
DLS 5: 012345678320471865538627104647180352764853210185206437853014726276538041401762583
...
DLS 15: 012345678320471865538627104647180352764853210185206437203564781871032546456718023
DLS 16: 012345678120473865538627104647180352764851230385206417803514726276038541451762083
DLS 17: 012345678120473865538627104647180352764851230385206417203514786876032541451768023
DLS 18: 012345678120473865538627104647180352764851230385206417803564721271038546456712083
DLS 19: 012345678120473865538627104647180352764851230385206417203564781871032546456718023
Adjacency matrix:
0111000000000000000
1000111111111111111
1000000011100001111
1000000010000000000
0100000000000000000
0100000000000000000
0100000000000000000
0100000000000000000
0111000000000000000
0110000000000000000
0110000000000000000
0100000000000000000
0100000000000000000
0100000000000000000
0100000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120473865538627104647180352764851230385206417253014786876532041401768523
CF 2: 012345678126537804843102567570864132605478321387621045761250483438716250254083716
CF 3: 012345678123587460746028153581470326208654731674213085357106842830762514465831207
CF 4: 012345678123578046564821307387610254248056713456237180731402865870164532605783421
CF 5: 012345678120476853358724106483562017567138240746081532234650781871203465605817324
...
CF 15: 012345678120483756578136024807654213634710582385267140253078461461502837746821305
CF 16: 012345678120436857358724106487562013563178240746081532274610385835207461601853724
CF 17: 012345678120436857358724106487562013563178240746081532874610325235807461601253784
CF 18: 012345678120473865538627104647180352764851230385206417803564721271038546456712083
CF 19: 012345678120473865538627104647180352764851230385206417203564781871032546456718023
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 8, 16]
Multiset of vertices powers:
{1:8, 2:7, 3:2, 8:1, 16:1}
301. Structure 19N36M19C
DLSs within combinatorial structure:
DLS 1: 012345678120486753485671230573124806247063185634758012861507324706832541358210467
DLS 2: 012345678251708346836257014104872563368510427720634851643021785475186230587463102
DLS 3: 012345678251708346836257014104832567768510423320674851643021785475186230587463102
DLS 4: 012345678271508346836257014104832765568710423320674851643021587457186230785463102
DLS 5: 012345678120476853475681230283154706547063182634728015861507324706832541358210467
...
DLS 15: 012345678423186750185674203270451836547063182631728045864507321706832514358210467
DLS 16: 012345678123476850475681203580124736247063185634758012861507324706832541358210467
DLS 17: 012345678423176850175684203580421736247063185631758042864507321706832514358210467
DLS 18: 012345678123486750485671203570124836247063185634758012861507324706832541358210467
DLS 19: 012345678423186750185674203570421836247063185631758042864507321706832514358210467
Adjacency matrix:
0111000000000000000
1000111111111111111
1000111111111111111
1000000000100000011
0110000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
0111000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
0110000000000000000
0111000000000000000
0111000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120486753485671230573124806247063185634758012861507324706832541358210467
CF 2: 012345678123750864468123057506482731287631405634507182371268540845076213750814326
CF 3: 012345678120486735836521407673850124568274013784613250401738562357102846245067381
CF 4: 012345678120468735836521407673850124568274013784613250401736582357102846245087361
CF 5: 012345678120476853475681230283154706547063182634728015861507324706832541358210467
...
CF 15: 012345678120687435768210543437521860351876204685034127876402351543768012204153786
CF 16: 012345678120678453768012345873450126504867231456123780687231504345786012231504867
CF 17: 012345678120678453768012345873450126534867201456123780687201534345786012201534867
CF 18: 012345678120678453768012345873450126501867234456123780687234501345786012234501867
CF 19: 012345678120678453768012345873450126531867204456123780687204531345786012204531867
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 16, 16]
Multiset of vertices powers:
{2:12, 3:4, 4:1, 16:2}
302. Structure 19N52M19C
DLSs within combinatorial structure:
DLS 1: 012345678123480567681753420748561032504672813837206145270814356456037281365128704
DLS 2: 012345678831206754476532081685413207157820346243187560504671823360758412728064135
DLS 3: 012345678861203754473562081385416207157820346246187530504671823630758412728034165
DLS 4: 012345678831206754276534081685413207157820346423187560504671823360758412748062135
DLS 5: 012345678861203754273564081385416207157820346426187530504671823630758412748032165
...
DLS 15: 012345678841203756473562081385614207157820364264187530506471823630758412728036145
DLS 16: 012345678831206754476582031685413207157820346248137560504671823360758412723064185
DLS 17: 012345678861203754473582061385416207157820346248167530504671823630758412726034185
DLS 18: 012345678831206754276584031685413207157820346428137560504671823360758412743062185
DLS 19: 012345678861203754273584061385416207157820346428167530504671823630758412746032185
Adjacency matrix:
0111100000000000000
1000011111111100000
1000011111111100000
1000011111111100000
1000011111111100000
0111100000000010000
0111100000000011111
0111100000000010000
0111100000000010000
0111100000000000000
0111100000000001111
0111100000000000000
0111100000000000000
0111100000000000000
0000011110000000000
0000001000100000000
0000001000100000000
0000001000100000000
0000001000100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123480567681753420748561032504672813837206145270814356456037281365128704
CF 2: 012345678120478536734850261685127403473561082856013724201736845347682150568204317
CF 3: 012345678120478536374850261685127403437561082856013724201736845743682150568204317
CF 4: 012345678120478536734860251586127403473651082865013724201736845347582160658204317
CF 5: 012345678120478536374860251586127403437651082865013724201736845743582160658204317
...
CF 15: 012345678120458736354870261685127403437561082876013524201736845743682150568204317
CF 16: 012345678120468357537826041753682410208514736846753102684170523461037285375201864
CF 17: 012345678120468357537826041703682415258014736846753102684170523461537280375201864
CF 18: 012345678120478536437860251586124703743651082865013427201736845374582160658207314
CF 19: 012345678120478536347860251586124703734651082865013427201736845473582160658207314
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 5, 5, 5, 8, 9, 10, 10, 10, 10]
Multiset of vertices powers:
{2:4, 4:6, 5:3, 8:1, 9:1, 10:4}
303. Structure 20N19M5C
DLSs within combinatorial structure:
DLS 1: 012345678123678450587204163368512704475160382806423517640731825231857046754086231
DLS 2: 012345678547810236726583401453206817831672540674138025365027184108764352280451763
DLS 3: 012345678684273051867452310528160743103527864350614287741836502276081435435708126
DLS 4: 012345678683472051867254310538160724104527863250613487741836502376081245425708136
DLS 5: 012345678683472051865234710378160524104723865250617483741856302536081247427508136
...
DLS 16: 012345678147863205725130486463281057381672540674508321856027134530714862208456713
DLS 17: 012345678547813206726530481453286017381672540674108325865027134130764852208451763
DLS 18: 012345678125637840578123064367581402430862157806274531683410725254708316741056283
DLS 19: 012345678537810246726483501345206817851672430674158023463027185108764352280531764
DLS 20: 012345678537610842726483501345806217651278430874152063483067125108724356260531784
Adjacency matrix:
01000000000000000000
10111111111000000000
01000000000000000000
01000000000111111111
01000000000000000000
01000000000000000000
01000000000000000000
01000000000000000000
01000000000000000000
01000000000000000000
01000000000000000000
00010000000000000000
00010000000000000000
00010000000000000000
00010000000000000000
00010000000000000000
00010000000000000000
00010000000000000000
00010000000000000000
00010000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123678450587204163368512704475160382806423517640731825231857046754086231
CF 2: 012345678124037856576180324681754230345812067403268715230476581867503142758621403
CF 3: 012345678124037856576480321683754210435812067301268745240176583867501432758623104
CF 4: 012345678120478365587630241638504712346812507274056183403721856851267430765183024
CF 5: 012345678123780546684051723307562814846217035471638250250476381735804162568123407
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10]
Multiset of vertices powers:
{1:18, 10:2}
304. Structure 20N20M3C
DLSs within combinatorial structure:
DLS 1: 012345678124038765376184052541862307207516834830457126463271580658703241785620413
DLS 2: 012345678750683142638452701876210534485137026104576283321708465567824310243061857
DLS 3: 012345678756180342103452786678201534485067123364578201820713465537624810241836057
DLS 4: 012345678530682147648257301826410753485173026107536482351708264763824510274061835
DLS 5: 012345678536782041147250386628401753485063127761538402350817264873624510204176835
...
DLS 16: 012345678826714035567180423435872160203567814174053286641238507358601742780426351
DLS 17: 012345678536082741748251306627410853485163027160537482351708264873624510204876135
DLS 18: 012345678265083741738461205627510834486132057140627583351708426874256310503874162
DLS 19: 012345678720683145638574201856410732487132056105726483371208564264857310543061827
DLS 20: 012345678726180345103574286658401732487062153365728401870213564234657810541836027
Adjacency matrix:
01111110000000000000
10000000000000000000
10000000000000000000
10000001111100000000
10000000000000000000
10000000001011110000
10000000000000000000
00010000000000000000
00010000000000000000
00010000000000000000
00010100000000001111
00010000000000000000
00000100000000000000
00000100000000000000
00000100000000000000
00000100000000000000
00000000001000000000
00000000001000000000
00000000001000000000
00000000001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678124038765376184052541862307207516834830457126463271580658703241785620413
CF 2: 012345678124538760853627041408763512785016234376204185267451803640182357531870426
CF 3: 012345678120457836734608512678520143367812054453786201806174325541263780285031467
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6]
Multiset of vertices powers:
{1:16, 6:4}
305. Structure 20N25M10C
DLSs within combinatorial structure:
DLS 1: 012345678120476835685107423734851260473562081856213704347680152201738546568024317
DLS 2: 012345678685730142374286510250613487106827354437051826821504763568472031743168205
DLS 3: 012345678685730142437286510250617384106824753743051826821503467568472031374168205
DLS 4: 012345678120476835685107423734851062473560281856213704347682150201738546568024317
DLS 5: 012345678120476835865107423734851062473560281658213704347682150201738546586024317
...
DLS 16: 012345678437862051658123704201476835586014327865207413120738546743581260374650182
DLS 17: 012345678437062851658124703281476035506813427865207314120738546743581260374650182
DLS 18: 012345678437061852658214703281476035506823417865107324120738546743582160374650281
DLS 19: 012345678437862051658124703201476835586013427865207314120738546743581260374650182
DLS 20: 012345678437861052658214703201476835586023417865107324120738546743582160374650281
Adjacency matrix:
01100000000000000000
10011100000000000000
10011111110000000000
01100000000000000000
01100000000000000000
01100000001000000000
00100000000000000000
00100000000000000000
00100000000000000000
00100000000000000000
00000100000110000000
00000000001001111111
00000000001000010011
00000000000100000000
00000000000100000000
00000000000110000000
00000000000100000000
00000000000100000000
00000000000110000000
00000000000110000000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835685107423734851260473562081856213704347680152201738546568024317
CF 2: 012345678123756804345807261706124583468570132250638417871462350637281045584013726
CF 3: 012345678123678540567431082745813206801254763458106327386027415670582134234760851
CF 4: 012345678120476835685107423734851062473560281856213704347682150201738546568024317
CF 5: 012345678120476835865107423734851062473560281658213704347682150201738546586024317
CF 6: 012345678120476835865107423734851260473562081658213704347680152201738546586024317
CF 7: 012345678120476835685107423734851062453760281876213504347682150201538746568024317
CF 8: 012345678120476835865107423734851062453760281678213504347682150201538746586024317
CF 9: 012345678120476835685107423734851260453762081876213504347680152201538746568024317
CF 10: 012345678120476835865107423734851260453762081678213504347680152201538746586024317
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 8, 8]
Multiset of vertices powers:
{1:8, 2:6, 3:2, 4:2, 8:2}
306. Structure 20N28M9C
DLSs within combinatorial structure:
DLS 1: 012345678124038765678153042581672403347510286230467851403286517856724130765801324
DLS 2: 012345678371682540803761254740126385486253107564038712257810463635407821128574036
DLS 3: 012345678853764012537680421304216587186432750421078365765823104678501243240157836
DLS 4: 012345678653781042537860124304216587168432750826074315745123806471508263280657431
DLS 5: 012345678873564210735682401304216587186437025451708362260873154628051743547120836
...
DLS 16: 012345678763850421431026587356784012825437160587612304240173856678501243104268735
DLS 17: 012345678763581420435826107306714582128437065857602314240173856671058243584260731
DLS 18: 012345678134028756658174032781563204246710583570236841307682415863457120425801367
DLS 19: 012345678120437865658174032871652340345718206207563481584206713436820157763081524
DLS 20: 012345678130427856658174032871563240246718503507236481384602715463850127725081364
Adjacency matrix:
01111100000000000000
10000000000000000000
10000011100000000000
10000011110000000000
10000011100000000000
10000011101100000000
00111100000011000000
00111100000000000000
00111100000000000000
00010000000000000000
00000100000000111000
00000100000000000000
00000010000000000000
00000010000000000111
00000000001000000000
00000000001000000000
00000000001000000000
00000000000001000000
00000000000001000000
00000000000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678124038765678153042581672403347510286230467851403286517856724130765801324
CF 2: 012345678123478065587160324861504237476012853658723140735681402304256781240837516
CF 3: 012345678124038765765182403851763042346817520678504231587620314403256187230471856
CF 4: 012345678123870564584206713405632187746518302638427051270153846851764230367081425
CF 5: 012345678124038765587160324671584230348612057403276581230457816856703142765821403
CF 6: 012345678127058463703162584231784056548617320854206731460523817675830142386471205
CF 7: 012345678123458760765182403681703542458017326304276185240631857876524031537860214
CF 8: 012345678120437865658174032871652340345718206207563481584206713436820157763081524
CF 9: 012345678123058764465827103658403217831672540307216485270134856746581032584760321
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6]
Multiset of vertices powers:
{1:10, 4:6, 5:2, 6:2}
307. Structure 20N36M10C
DLSs within combinatorial structure:
DLS 1: 012345678123458706458723160604587231267031584370216845786102453845670312531864027
DLS 2: 012345678348206157835467201186723540720614835263058714504871326471582063657130482
DLS 3: 012345678358206147834567201186723450720614835263058714405871326571482063647130582
DLS 4: 012345678340286157835467201186723540728614035263058714504871326471502863657130482
DLS 5: 012345678350286147834567201186723450728614035263058714405871326571402863647130582
...
DLS 16: 012345678350286147824567301186732450738614025263058714405871236571403862647120583
DLS 17: 012345678623178504156723480804517236285036741370284165741602853467850312538461027
DLS 18: 012345678623158704156723480804517236287036541370284165741602853465870312538461027
DLS 19: 012345678623178504156723480408567231285031746370284165741602853867450312534816027
DLS 20: 012345678623158704156723480408567231287031546370284165741602853865470312534816027
Adjacency matrix:
01111000000000000000
10000100000000000000
10000111110000000000
10000100000000000000
10000111110000000000
01111000000000000000
00101000001111000000
00101000001111000000
00101000000000110000
00101000000000110000
00000011000000001100
00000011000000000011
00000011000000001100
00000011000000000011
00000000110000000000
00000000110000000000
00000000001010000000
00000000001010000000
00000000000101000000
00000000000101000000
Different CFs set within combinatorial structure:
CF 1: 012345678123458706458723160604587231267031584370216845786102453845670312531864027
CF 2: 012345678123780546358216704687402135704568213845137062460851327231674850576023481
CF 3: 012345678123678450786450123531807264264531807807264531450123786345786012678012345
CF 4: 012345678123708546846253107781532460264870351357614082470126835635087214508461723
CF 5: 012345678123678450786450123531867204204531867867204531450123786345786012678012345
CF 6: 012345678120486753643017285275830164538672041856124307784261530467503812301758426
CF 7: 012345678231680754754236180107853426346578012863421507580764231425107863678012345
CF 8: 012345678231476805184760253625807431763054182457182360806531724548623017370218546
CF 9: 012345678123678450876450123531807264264531807708264531450123786345786012687012345
CF 10: 012345678123678450876450123531867204204531867768204531450123786345786012687012345
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{2:8, 4:8, 6:4}
308. Structure 20N36M20C
DLSs within combinatorial structure:
DLS 1: 012345678123486750465738102507864231648072315354621087780153426831207564276510843
DLS 2: 012345678831207564604851327163720485376518042785462130257634801420186753548073216
DLS 3: 012345678831204567607851324163420785376518042485762130254637801720186453548073216
DLS 4: 012345678123486750465730182507864231648072315354621807780153426831207564276518043
DLS 5: 012345678123486750465730182607854231548072316354621807780163425831207564276518043
...
DLS 16: 012345678423186750165738402607851234548072316351624087780463125834207561276510843
DLS 17: 012345678423186750165738402507861324648073215351624087780452136834207561276510843
DLS 18: 012345678423186750165738402607851324548073216351624087780462135834207561276510843
DLS 19: 012345678138207564604851327863720415376518042785462130257634801420186753541073286
DLS 20: 012345678138204567607851324863420715376518042485762130254637801720186453541073286
Adjacency matrix:
01100000000000000000
10011111111111111100
10011111111111111100
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000011
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000011
01100000000000000000
01100000000000000000
00000000000100010000
00000000000100010000
Different CFs set within combinatorial structure:
CF 1: 012345678123486750465738102507864231648072315354621087780153426831207564276510843
CF 2: 012345678120487563634258107765124380348570216581036724403761852857602431276813045
CF 3: 012345678123480756465732180501864327648073215357621804780156432834207561276518043
CF 4: 012345678123486750465730182507864231648072315354621807780153426831207564276518043
CF 5: 012345678123467805485721360807652431546873012730184526364208157251036784678510243
...
CF 16: 012345678123486750765138402604851237548072316357624081480763125831207564276510843
CF 17: 012345678120487536834652107765124380648570213587063421406731852351208764273816045
CF 18: 012345678120476835357261084635827401784150263578634120461082357846503712203718546
CF 19: 012345678120483567674258103765124380348570216581036724403761852857602431236817045
CF 20: 012345678123480567674851230357624801206518743468037152845702316531276084780163425
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 16, 16]
Multiset of vertices powers:
{2:16, 4:2, 16:2}
309. Structure 20N36M20C
DLSs within combinatorial structure:
DLS 1: 012345678120487563476528130584172306861730254653014827235806741347651082708263415
DLS 2: 012345678735206814804763251267830145526178403340651782183427560658014327471582036
DLS 3: 012345678735206814804763251267830145586172403340651782123487560658014327471528036
DLS 4: 012345678520481763476128530784512306805736214653074821237860145341657082168203457
DLS 5: 012345678520487163476128530184572306805736214653014827231860745347651082768203451
...
DLS 16: 012345678570482163426178530184527306865230714653014827731806245347651082208763451
DLS 17: 012345678120478563486527130574182306861730254653014827235806741347651082708263415
DLS 18: 012345678170428563486572130524187306861230754653014827735806241347651082208763415
DLS 19: 012345678520478163486127530174582306865730214653014827231806745347651082708263451
DLS 20: 012345678570428163486172530124587306865230714653014827731806245347651082208763451
Adjacency matrix:
01100000000000000000
10011111111111111111
10011111111111111111
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
01100000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120487563476528130584172306861730254653014827235806741347651082708263415
CF 2: 012345678123457860708123546540762183265810437431086725684571302876234051357608214
CF 3: 012345678123578460734081526687104253540632817358726104861450732405267381276813045
CF 4: 012345678123507846358460127487612503846273015564031782705824361231786450670158234
CF 5: 012345678123567840358406127487612503846273015564031782705824361231780456670158234
...
CF 16: 012345678120567843358406127487612530246873015564031782705284361831720456673158204
CF 17: 012345678120478563486527130574182306861730254653014827235806741347651082708263415
CF 18: 012345678120567843358406127487612530201873465564031782745280316836724051673158204
CF 19: 012345678123058746284701563836572014758630421475186230367824105501467382640213857
CF 20: 012345678120567843358406127487612530206873415564031782745280361831724056673158204
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 18, 18]
Multiset of vertices powers:
{2:18, 18:2}
310. Structure 20N40M3C
DLSs within combinatorial structure:
DLS 1: 012345678128473065754206381835612740601854237386127504240731856573068412467580123
DLS 2: 012345678356781240648157032581276304860432751273504816437068125724810563105623487
DLS 3: 012345678365781420648157032281574306820436751473602815537028164756810243104263587
DLS 4: 012345678356018247648157032570286314167432850203574186431860725824701563785623401
DLS 5: 012345678365018427648157032270584316127436850403672185531820764856701243784263501
...
DLS 16: 012345678247830516638714052854602137523176840786451203405267381160583724371028465
DLS 17: 012345678427503861638714052306451287860172345751286430183627504245038716574860123
DLS 18: 012345678427830561638714052856401237563172840781256403105627384240583716374068125
DLS 19: 012345678863457120527081463178236045346718502604523781250174836431860257785602314
DLS 20: 012345678736028154364801725187563402645710283578632041250174836821457360403286517
Adjacency matrix:
01111000000000000000
10000111100000000000
10000110100000000000
10000110100000000000
10000110110000000000
01111000000000000000
01111000001000000000
01000000000100000000
01111000000010000000
00001000000001000000
00000010000000100000
00000001000000111100
00000000100000000100
00000000010000111100
00000000001101000011
00000000000101000011
00000000000101000011
00000000000111000011
00000000000000111100
00000000000000111100
Different CFs set within combinatorial structure:
CF 1: 012345678128473065754206381835612740601854237386127504240731856573068412467580123
CF 2: 012345678123058764485627301856401237368172540701236485230714856647583012574860123
CF 3: 012345678124038765536184027471862350207516834360457182843271506658703241785620413
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5]
Multiset of vertices powers:
{2:4, 4:8, 5:8}
311. Structure 20N48M10C
DLSs within combinatorial structure:
DLS 1: 012345678123706854347518260456821307285067143608453721570182436834670512761234085
DLS 2: 012345678430281567826073145185760234547128306761534082254607813673812450308456721
DLS 3: 012345678460281537823076145185730264547128306731564082254607813376812450608453721
DLS 4: 012345678430218567826073145185760234547821306761534082254607813673182450308456721
DLS 5: 012345678460218537823076145185730264547821306731564082254607813376182450608453721
...
DLS 16: 012345678675218043826753104184537260360821457751604382243076815407182536538460721
DLS 17: 012345678460281735823056147185730264547128306731564082254607813376812450608473521
DLS 18: 012345678460218735823056147185730264547821306731564082254607813376182450608473521
DLS 19: 012345678351076824147238560426851307285760143608423751570182436834607215763514082
DLS 20: 012345678351706824147238560426851307285067143608423751570182436834670215763514082
Adjacency matrix:
01111000000000000000
10000111000000000000
10000111111100000000
10000111000000000000
10000111111100000000
01111000000000000000
01111000000011110000
01111000000011110000
00101000000000001100
00101000000000001100
00101000000000001100
00101000000000001100
00000011000000000011
00000011000000000011
00000011000000000011
00000011000000000011
00000000111100000000
00000000111100000000
00000000000011110000
00000000000011110000
Different CFs set within combinatorial structure:
CF 1: 012345678123706854347518260456821307285067143608453721570182436834670512761234085
CF 2: 012345678123806754306758421275480163587132046648217530451623807860574312734061285
CF 3: 012345678123076854347518260456821307285760143608453721570182436834607512761234085
CF 4: 012345678123857046568132704845701362784063215601274853430618527257486130376520481
CF 5: 012345678123607854856423107781534062245076381367218540570182436438760215604851723
CF 6: 012345678123607854456823107781534062245076381367218540570182436834760215608451723
CF 7: 012345678123067854856423107781534062245670381367218540570182436438706215604851723
CF 8: 012345678123067854456823107781534062245670381367218540570182436834706215608451723
CF 9: 012345678123807456856423107741536082265078341387214560570162834634780215408651723
CF 10: 012345678123057846568132704845701362704863215681274053430618527257486130376520481
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8]
Multiset of vertices powers:
{4:16, 8:4}
312. Structure 20N48M16C
DLSs within combinatorial structure:
DLS 1: 012345678123467805465728130830152764546873012701684253684501327257036481378210546
DLS 2: 012345678361580427854237061127864530270618345685723104406152783738401256543076812
DLS 3: 012345678361580724857234061124867530270618345685423107706152483438701256543076812
DLS 4: 012345678361508427854237061127864530278610345685723104406152783730481256543076812
DLS 5: 012345678361508724857234061124867530278610345685423107706152483430781256543076812
...
DLS 16: 012345678361508724857234016124867530278610345685423107706152483430786251543071862
DLS 17: 012345678163580427854237061327864510270618345685723104406152783738401256541076832
DLS 18: 012345678163508427854237061327864510278610345685723104406152783730481256541076832
DLS 19: 012345678163580724857234061324867510270618345685423107706152483438701256541076832
DLS 20: 012345678163508724857234061324867510278610345685423107706152483430781256541076832
Adjacency matrix:
01111000000000000000
10000111111100000000
10000111111100000000
10000111111100000000
10000111111100000000
01111000000011111111
01111000000000000000
01111000000011111111
01111000000000000000
01111000000000000000
01111000000000000000
01111000000000000000
00000101000000000000
00000101000000000000
00000101000000000000
00000101000000000000
00000101000000000000
00000101000000000000
00000101000000000000
00000101000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123467805465728130830152764546873012701684253684501327257036481378210546
CF 2: 012345678123584706706158432580423167248670315837261054461837520354706281675012843
CF 3: 012345678123680754534708261275861403458176320761453082846012537607234815380527146
CF 4: 012345678120576843357462180831607524784150362476238015263081457508714236645823701
CF 5: 012345678120576843357482160831607524764150382476238015283061457508714236645823701
...
CF 12: 012345678123067854405812736834701265768534102571286340350628417246170583687453021
CF 13: 012345678123508467306752184485123706548670312871064523764231850650487231237816045
CF 14: 012345678120576843357462180831607254784150362476238015563081427208714536645823701
CF 15: 012345678123680457534708261245861703458176320761453082876012534607234815380527146
CF 16: 012345678120576843357482160831607254764150382476238015583061427208714536645823701
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12]
Multiset of vertices powers:
{2:8, 4:6, 8:4, 12:2}
313. Structure 20N48M20C
DLSs within combinatorial structure:
DLS 1: 012345678123487560568721304431650782640578213705134826384062157857206431276813045
DLS 2: 012345678681032457134650782568724301273816045857203164426187530705461823340578216
DLS 3: 012345678681032754137650482568427301273816045854203167726184530405761823340578216
DLS 4: 012345678381062457134650782568724301276813045857206134423187560705431826640578213
DLS 5: 012345678381062754137650482568427301276813045854206137723184560405731826640578213
...
DLS 16: 012345678351862704137608452560487321276013845804526137783154260425731086648270513
DLS 17: 012345678851602437104836752583764021276013845367528104430157286725481360648270513
DLS 18: 012345678851602734107836452583467021276013845364528107730154286425781360648270513
DLS 19: 012345678423187560568724301134650782340578216785461023601832457857206134276013845
DLS 20: 012345678123487560568721304431650782340578216785164023604832157857206431276013845
Adjacency matrix:
01111000000000000000
10000111110000000000
10000111110000000000
10000001110000000000
10000001110000000000
01100000001100000000
01100000001100000000
01111000000000000000
01111000000011111100
01111000000011111100
00000110000000000000
00000110000000000000
00000000110000000011
00000000110000000011
00000000110000000011
00000000110000000011
00000000110000000011
00000000110000000011
00000000000011111100
00000000000011111100
Different CFs set within combinatorial structure:
CF 1: 012345678123487560568721304431650782640578213705134826384062157857206431276813045
CF 2: 012345678123764805784036152861502734245678013308421567456187320637250481570813246
CF 3: 012345678123487560468751302531620784640578213385164027704832156857206431276013845
CF 4: 012345678123754806784036152851602734246578013308421567465187320537260481670813245
CF 5: 012345678123487560468751302531620784640578213305164827784032156857206431276813045
...
CF 16: 012345678123874056468130725275481360584063217601257843730612584847506132356728401
CF 17: 012345678123487560486751032560124387648073215307568124751832406834206751275610843
CF 18: 012345678123407856408756132861524307640873215387061524756132480534280761275618043
CF 19: 012345678123486750408651237375124086247568103684037512851270364536702841760813425
CF 20: 012345678120486735605837124784162350548673012273018546836521407357204861461750283
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 10, 10]
Multiset of vertices powers:
{2:2, 4:12, 6:4, 10:2}
314. Structure 20N49M10C
DLSs within combinatorial structure:
DLS 1: 012345678120476853745681230683124705457063182234758016571802364806237541368510427
DLS 2: 012345678251780364384257016706832541630518427125476803863124750478601235547063182
DLS 3: 012345678251708364384257016706832541638510427125476803863124750470681235547063182
DLS 4: 012345678251708364384257016706832541638510427120476853863124705475681230547063182
DLS 5: 012345678251780364384527016706832541630218457125476803863154720478601235547063182
...
DLS 16: 012345678251780364384157026706831542630528417125476803863214750478602135547063281
DLS 17: 012345678251780364384517026706831542630128457125476803863254710478602135547063281
DLS 18: 012345678251708364384157026706831542638520417120476853863214705475682130547063281
DLS 19: 012345678251708364384157026706831542638520417125476803863214750470682135547063281
DLS 20: 012345678251708364384517026706831542638120457125476803863254710470682135547063281
Adjacency matrix:
01111100000000000000
10000011110000000000
10000011111111100000
10000011110000000000
10000011110000000000
10000011111111100000
01111100000000011111
01111100000000011111
01111100000000000000
01111100000000000000
00100100000000000000
00100100000000000011
00100100000000000011
00100100000000000000
00100100000000000000
00000011000000000000
00000011000000000000
00000011000000000000
00000011000110000000
00000011000110000000
Different CFs set within combinatorial structure:
CF 1: 012345678120476853745681230683124705457063182234758016571802364806237541368510427
CF 2: 012345678123486750534861207780153426648270315275638041861027534307514862456702183
CF 3: 012345678123476850745681203680124735457063182234758016571802364806237541368510427
CF 4: 012345678123486750634851207780163425548270316275638041861027534307514862456702183
CF 5: 012345678123476850745601283680124735457863102234758016571082364806237541368510427
CF 6: 012345678120476853745681230863124705457063182234758016571802364608237541386510427
CF 7: 012345678123476850745681203860124735457063182234758016571802364608237541386510427
CF 8: 012345678123476850745601283860124735457863102234758016571082364608237541386510427
CF 9: 012345678123486750534861207780153426648270315257638041861027534305714862476502183
CF 10: 012345678123486750634851207780163425548270316257638041861027534305714862476502183
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10]
Multiset of vertices powers:
{2:6, 4:4, 5:6, 10:4}
315. Structure 20N52M10C
DLSs within combinatorial structure:
DLS 1: 012345678120487536643752180485126307538670214861034752704561823357208461276813045
DLS 2: 012345678581063724167824305324657180853216047730482561275108436406731852648570213
DLS 3: 012345678581036724167824305324657180856213047730482561275108436403761852648570213
DLS 4: 012345678581063724167284305324657180253816047738402561875120436406731852640578213
DLS 5: 012345678581036724167284305324657180256813047738402561875120436403761852640578213
...
DLS 16: 012345678120487536743562180487126305638750214861034752504671823375208461256813047
DLS 17: 012345678581063724167284305324657810253816047738402561875120436406738152640571283
DLS 18: 012345678581036724167284305324657810256813047738402561875120436403768152640571283
DLS 19: 012345678581063724167824305324657810853216047738402561275180436406738152640571283
DLS 20: 012345678581036724167824305324657810856213047738402561275180436403768152640571283
Adjacency matrix:
01111110000000000000
10000001110000000000
10000001111100000000
10000001000011000000
10000001001111110000
10000001110011000000
10000001111111110000
01111110000000001111
01100110000000000011
01100110000000000000
00101010000000000101
00101010000000000000
00011110000000001111
00011110000000000000
00001010000000000101
00001010000000000000
00000001000010000000
00000001001010100000
00000001100010000000
00000001101010100000
Different CFs set within combinatorial structure:
CF 1: 012345678120487536643752180485126307538670214861034752704561823357208461276813045
CF 2: 012345678123678450634501782705826314860734125458017236381260547547182063276453801
CF 3: 012345678123057864284516307467802153651478032875163420730624581346280715508731246
CF 4: 012345678120487536543762180485126307638570214861034752704651823357208461276813045
CF 5: 012345678123587064284016357467852103651470832875163420730624581346208715508731246
CF 6: 012345678123507864284016357467852103651478032875163420730624581346280715508731246
CF 7: 012345678123067845745638012504812736286170453368524107451786320837201564670453281
CF 8: 012345678120487536643572180487126305738650214861034752504761823375208461256813047
CF 9: 012345678123067845745628013504812736386170452268534107451786320837201564670453281
CF 10: 012345678120487536743562180487126305638750214861034752504671823375208461256813047
Ascending sorted vector of vertices powers:
[2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 8, 8, 10, 10]
Multiset of vertices powers:
{2:2, 3:2, 4:6, 5:2, 6:4, 8:2, 10:2}
316. Structure 20N64M6C
DLSs within combinatorial structure:
DLS 1: 012345678120468357857104263436851720708632415285076134364710582571283046643527801
DLS 2: 012345678785632401463078512178523046520461387634187250807254163346710825251806734
DLS 3: 012345678785632401463078512178523046820461357634157280507284163346710825251806734
DLS 4: 012345678785632401463078512178523046521460387634187250807254163346701825250816734
DLS 5: 012345678785632401463078512178523046821460357634157280507284163346701825250816734
...
DLS 16: 012345678785632401364028517128574036571460382643187250807253164436701825250816743
DLS 17: 012345678785632401364028517128574036871460352643157280507283164436701825250816743
DLS 18: 012345678120468357857106243634851720708632415285074136346710582571283064463527801
DLS 19: 012345678120468357807156243634801725758632410285074136346710582571283064463527801
DLS 20: 012345678120468357807154263436801725758632410285076134364710582571283046643527801
Adjacency matrix:
01111111111111111000
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
01111111111111111000
01111111111111111000
01111111111111111000
Different CFs set within combinatorial structure:
CF 1: 012345678120468357857104263436851720708632415285076134364710582571283046643527801
CF 2: 012345678231078546567483102853167420684752031740236815476810253105624387328501764
CF 3: 012345678231508746746810235470236851684752013853167402567483120105624387328071564
CF 4: 012345678231078546567483102853167420684752013740216835476830251105624387328501764
CF 5: 012345678231486750675028314567810423843562107480137562104673285328751046756204831
CF 6: 012345678120468357807154263436801725758632410285076134364710582571283046643527801
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 16, 16, 16, 16]
Multiset of vertices powers:
{4:16, 16:4}
317. Structure 20N64M20C
DLSs within combinatorial structure:
DLS 1: 012345678120486735836521407473850162568274013784613250601738524357102846245067381
DLS 2: 012345678673850124258103746527486013741632580460521837384067251805714362136278405
DLS 3: 012345678673850124258163740527486013741032586460521837384607251805714362136278405
DLS 4: 012345678673850124258103746527486013741632580460571832384067251805214367136728405
DLS 5: 012345678673850124258163740527486013741032586460571832384607251805214367136728405
...
DLS 16: 012345678673810524258103746527486013745632180860571432384067251401258367136724805
DLS 17: 012345678673810524258163740527486013745032186860571432384607251401258367136724805
DLS 18: 012345678328406715836512407471850326560174832784263150103728564257681043645037281
DLS 19: 012345678128406735836521407473850162560274813784613250601738524357182046245067381
DLS 20: 012345678320486715836512407471850326568174032784263150103728564257601843645037281
Adjacency matrix:
01111111111111111000
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
10000000000000000111
01111111111111111000
01111111111111111000
01111111111111111000
Different CFs set within combinatorial structure:
CF 1: 012345678120486735836521407473850162568274013784613250601738524357102846245067381
CF 2: 012345678120687435678210543781452306543768012256103784867534120304876251435021867
CF 3: 012345678123480756456827130784503261568271304375618042830156427647032815201764583
CF 4: 012345678123057864458163027735604281584732106607581432361428750876210543240876315
CF 5: 012345678123480756456827130781503264568274301375618042830156427647032815204761583
...
CF 16: 012345678120768453345210786457682130286534017863107524534071862701826345678453201
CF 17: 012345678120768453345210786457682130786534012863107524534021867201876345678453201
CF 18: 012345678230768154547681230128534067706812543354076821863207415475120386681453702
CF 19: 012345678124587306548031762483672150276158043765403821301726485837260514650814237
CF 20: 012345678230687145564102387157826034678453201483071526341268750825710463706534812
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 16, 16, 16, 16]
Multiset of vertices powers:
{4:16, 16:4}
318. Structure 20N68M4C
DLSs within combinatorial structure:
DLS 1: 012345678123876054435768120354687201860534712678021543786210435547102386201453867
DLS 2: 012345678438210567867021354786102435671453820543768012354876201205687143120534786
DLS 3: 012345678348210567867021453786102345671453820534768012453876201205687134120534786
DLS 4: 012345678431280567867021354786102435678453120543768012354876201205617843120534786
DLS 5: 012345678341280567867021453786102345678453120534768012453876201205617834120534786
...
DLS 16: 012345678283176054435768210354217806160534782876021543721680435547802361608453127
DLS 17: 012345678624507831548132067370684152256718304401273586835461720167850243783026415
DLS 18: 012345678721083465603457182857612340485170236168504723530726814246831057374268501
DLS 19: 012345678750183462128657043637402815485071236203516784861724350546830127374268501
DLS 20: 012345678324508761607134582845672130256817304561483027470261853138750246783026415
Adjacency matrix:
01111111100000000000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111111000
10000000011111110000
10000000011111110000
10000000011111110100
10000000011111110000
01111111100000000010
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000001
00001000000000000000
00000001000000000000
00000000010000000000
00000000000000010000
Different CFs set within combinatorial structure:
CF 1: 012345678123876054435768120354687201860534712678021543786210435547102386201453867
CF 2: 012345678123786054547210386438102567354867201860453712671534820205678143786021435
CF 3: 012345678123806745534768120345687201867534012678021453786210534450172386201453867
CF 4: 012345678123587046845126730278601453651730284386274501730412865467058312504863127
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9]
Multiset of vertices powers:
{1:4, 8:12, 9:4}
319. Structure 20N68M10C
DLSs within combinatorial structure:
DLS 1: 012345678120568743865734012658402137201873465374156820786210354437021586543687201
DLS 2: 012345678378456120201873465460531782825764013137028546543687201654102837786210354
DLS 3: 012345678378456120201873465460521783835764012127038546543687201654102837786210354
DLS 4: 012345678358406127271853460465731082827064513130528746543687201604172835786210354
DLS 5: 012345678358406127271853460465721083837064512120538746543687201604172835786210354
...
DLS 16: 012345678860534712435721086251803467304176825678452130786210354127068543543687201
DLS 17: 012345678120568743865734012608452137251873406374106825786210354437621580543087261
DLS 18: 012345678820564713465731082601852437254173806378406125786210354137628540543087261
DLS 19: 012345678374156820208471365860524731135768042427013586541687203653802417786230154
DLS 20: 012345678354106827278451360865724031137068542420513786541687203603872415786230154
Adjacency matrix:
01111111100000000000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111111100
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111110000
01111111100000000000
01111111100000000011
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
00001000000000000000
00001000000000000000
00000000001000000000
00000000001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120568743865734012658402137201873465374156820786210354437021586543687201
CF 2: 012345678120568743586734120265810437831476205407253861743102586354687012678021354
CF 3: 012345678120568743586734120261850437835476201407213865743102586354687012678021354
CF 4: 012345678120473865768052431453687210247530186876201354381764502605128743534816027
CF 5: 012345678120473865768052431453687210647530182876201354381724506205168743534816027
CF 6: 012345678120476853567284031834561207681037524403758162756123480348602715275810346
CF 7: 012345678120568743865734012608452137251873460374106825786210354437021586543687201
CF 8: 012345678120476853567284031834561207685037124403718562756123480348602715271850346
CF 9: 012345678120568743865734012608452137251873406374106825786210354437621580543087261
CF 10: 012345678120576843567284031835461207681037425403758162746123580358602714274810356
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10]
Multiset of vertices powers:
{1:4, 8:14, 10:2}
320. Structure 20N68M20C
DLSs within combinatorial structure:
DLS 1: 012345678123567804347851260281603547856014723604738152735280416568472031470126385
DLS 2: 012345678785203416854016723673124805367851240548672031120567384431780562206438157
DLS 3: 012345678785203416856014723473126805347851260568472031120567384631780542204638157
DLS 4: 012345678285603417856014723463172805347851260528467031170526384731280546604738152
DLS 5: 012345678785203146856014723173426805347851260568172034420567381634780512201638457
...
DLS 16: 012345678123467805347851260281603457856014723605738142734280516468572031570126384
DLS 17: 012345678128567034347851260231680547856014723684703152705238416560472381473126805
DLS 18: 012345678128467035347851260231680457856014723685703142704238516460572381573126804
DLS 19: 012345678235680147856014723168472035374851260520167384743526801407238516681703452
DLS 20: 012345678285603147856014723163472805374851260528167034740526381437280516601738452
Adjacency matrix:
01111111111000000000
10000000000000000000
10000000000111111100
10000000000111111100
10000000000111111100
10000000000111111100
10000000000000000000
10000000000111111100
10000000000111111100
10000000000111111100
10000000000111111100
00111101111000000000
00111101111000000000
00111101111000000000
00111101111000000011
00111101111000000000
00111101111000000000
00111101111000000000
00000000000000100000
00000000000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678123567804347851260281603547856014723604738152735280416568472031470126385
CF 2: 012345678120467835847051263485630127356812740601783452734208516263574081578126304
CF 3: 012345678120467835847051263285630147356814720601783452734208516463572081578126304
CF 4: 012345678120467835605738412231680547357814260784203156846051723473526081568172304
CF 5: 012345678120567834847051263284630157356814720601783542735208416563472081478126305
...
CF 16: 012345678120586347748260153503617482674152830481073265356408721835724016267831504
CF 17: 012345678120468357348506721834752016287631504675124830756280143501873462463017285
CF 18: 012345678120468357348506721834752016281637504675124830756280143507813462463071285
CF 19: 012345678120478536573604281864527013207863154735081462641732805358216740486150327
CF 20: 012345678120568347874230165357612804748051236461783052583426710206174583635807421
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10]
Multiset of vertices powers:
{1:4, 8:14, 10:2}
321. Structure 20N68M20C
DLSs within combinatorial structure:
DLS 1: 012345678120487563376128045657801234438256701584763120763510482845072316201634857
DLS 2: 012345678247816305438672510780524163523061487106237854851703246674158032365480721
DLS 3: 012345678247816305438672510720584163583061427106237854851703246674158032365420781
DLS 4: 012345678247816305438602517780524163523761480106237854851073246674158032365480721
DLS 5: 012345678247816305438602517720584163583761420106237854851073246674158032365420781
...
DLS 16: 012345678120678543347216085856401237638154702584763120473520861765082314201837456
DLS 17: 012345678120678543347126085856401237638254701584763120473510862765082314201837456
DLS 18: 012345678120487563376218045657831204408156732584763120763520481845072316231604857
DLS 19: 012345678120487563376128045657831204408256731584763120763510482845072316231604857
DLS 20: 012345678120487563376218045657801234438156702584763120763520481845072316201634857
Adjacency matrix:
01111111100000000000
10000000011111111111
10000000000001111111
10000000000001111111
10000000000001111111
10000000000001111111
10000000000001111111
10000000000001111111
10000000000001111111
01000000000000000000
01000000000000000000
01000000000000000000
01000000000000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120487563376128045657801234438256701584763120763510482845072316201634857
CF 2: 012345678123468507506721483248576310675813042834207165467032851750184236381650724
CF 3: 012345678123768504506421783248576310675813042837204165764032851450187236381650427
CF 4: 012345678123468507506731482248576310675812043834207165467023851750184236381650724
CF 5: 012345678123768504506431782248576310675812043837204165764023851450187236381650427
...
CF 16: 012345678120678543347216085856401237638154702584763120473520861765082314201837456
CF 17: 012345678120678543347126085856401237638254701584763120473510862765082314201837456
CF 18: 012345678120487563376218045657831204408156732584763120763520481845072316231604857
CF 19: 012345678120487563376128045657831204408256731584763120763510482845072316231604857
CF 20: 012345678120487563376218045657801234438156702584763120763520481845072316201634857
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12]
Multiset of vertices powers:
{1:4, 8:15, 12:1}
322. Structure 20N69M20C
DLSs within combinatorial structure:
DLS 1: 012345678120487365506138724854760213248651037785203146371826450637014582463572801
DLS 2: 012345678578621034834760215301856427627014583463572801150487362246138750785203146
DLS 3: 012345678578621034634780215301856427827014563463572801150467382246138750785203146
DLS 4: 012345678548621730837064215371856024620417583463572801154780362206138457785203146
DLS 5: 012345678548621730637084215371856024820417563463572801154760382206138457785203146
...
DLS 16: 012345678820467315508621734654710283341856027785203146276138450137084562463572801
DLS 17: 012345678134287065546138720850763412208651347785024136371806254627410583463572801
DLS 18: 012345678834267015548631720650713482201856347785024136376108254127480563463572801
DLS 19: 012345678375681024684750312201836457837014265463572801120467583546128730758203146
DLS 20: 012345678345681720687054312271836054830417265463572801124760583506128437758203146
Adjacency matrix:
01111111100000000000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111111100
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000011
01111111100000000000
00000000100000000000
00000000100000000001
00000000000000100000
00000000000000100100
Different CFs set within combinatorial structure:
CF 1: 012345678120487365506138724854760213248651037785203146371826450637014582463572801
CF 2: 012345678123487560254836701485761023801652437637208154760124385546073812378510246
CF 3: 012345678120478356875203164386127405734860521658014237463582710547631082201756843
CF 4: 012345678120463857531687402458720361604231785763158024846072513375816240287504136
CF 5: 012345678120463857531607482458720361684231705763158024846072513375816240207584136
...
CF 16: 012345678120463857684201735458720361501637482763158024876012543345876210237584106
CF 17: 012345678120453867346872510863724051507238146758061324631587402475106283284610735
CF 18: 012345678124538067768210453835607214387452106476183520643021785501876342250764831
CF 19: 012345678120487563734652180571863204658270431483016752865104327347528016206731845
CF 20: 012345678123756804546028317657802431304671285870134562735280146268413750481567023
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10]
Multiset of vertices powers:
{1:2, 2:2, 8:14, 10:2}
323. Structure 20N70M20C
DLSs within combinatorial structure:
DLS 1: 012345678120463857453728061281634705578016243804257136346872510637501482765180324
DLS 2: 012345678637284105581607432728453061346872510450168327875016243163720854204531786
DLS 3: 012345678637281405584607132728153064346872510150468327875016243463720851201534786
DLS 4: 012345678160753824723468051581237406875016243607584132346872510234601785458120367
DLS 5: 012345678160453827423768051581234706875016243604587132346872510237601485758120364
...
DLS 16: 012345678537681402284507136758163024346872510160428357875016243423750861601234785
DLS 17: 012345678687204135501637482723450861346872510458163027875016243160728354234581706
DLS 18: 012345678687201435504637182723150864346872510158463027875016243460728351231584706
DLS 19: 012345678587604132201537486753460821346872510468123057875016243120758364634281705
DLS 20: 012345678587601432204537186753160824346872510168423057875016243420758361631284705
Adjacency matrix:
01100000000000000000
10011111111100000000
10011111111111000000
01100000000000111111
01100000000000111111
01100000000000111111
01100000000000111111
01100000000000111111
01100000000000111111
01100000000000000000
01100000000000111111
01100000000000111111
00100000000000000000
00100000000000000000
00011111101100000000
00011111101100000000
00011111101100000000
00011111101100000000
00011111101100000000
00011111101100000000
Different CFs set within combinatorial structure:
CF 1: 012345678120463857453728061281634705578016243804257136346872510637501482765180324
CF 2: 012345678120463857634281705468750321501637482753128064876012543345876210287504136
CF 3: 012345678120463857634201785468750321581637402753128064876012543345876210207584136
CF 4: 012345678120468753875603421234870165756014832601237584487526310563182047348751206
CF 5: 012345678120568743874603521235870164756014832601237485587426310463182057348751206
...
CF 16: 012345678120486735671038542483750126734561280856123407567204813348672051205817364
CF 17: 012345678123487560851632407465721083204856731637208154780164325576013842348570216
CF 18: 012345678123487560851602437465721083234856701607238154780164325576013842348570216
CF 19: 012345678120483567536728410453872106748651023687014352201536784874160235365207841
CF 20: 012345678120487365378156420463572801246831057637014582501628734854760213785203146
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 12]
Multiset of vertices powers:
{1:2, 2:2, 8:14, 10:1, 12:1}
324. Structure 20N72M10C
DLSs within combinatorial structure:
DLS 1: 012345678120473865734856021453687210605138742876201354281764503347520186568012437
DLS 2: 012345678645738102201564783876201354130852467453687210564073821728416035387120546
DLS 3: 012345678685730142241568703876201354138452067453687210560873421724016835307124586
DLS 4: 012345678645738102201564783876201354730852461453687210564013827128476035387120546
DLS 5: 012345678685730142241568703876201354738452061453687210560813427124076835307124586
...
DLS 16: 012345678724853061538016427453687210687534102876201354245160783301728546160472835
DLS 17: 012345678124873065738156420453687201285034716876201354641720583307568142560412837
DLS 18: 012345678124873065738156420453687201685034712876201354241760583307528146560412837
DLS 19: 012345678685732140241568703876201354138450267453687012560873421724016835307124586
DLS 20: 012345678685732140241568703876201354738450261453687012560813427124076835307124586
Adjacency matrix:
01111111100000000000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111110000
10000000011111111100
10000000011111110000
10000000011111111100
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000011
01111111100000000000
01111111100000000000
01111111100000000011
00000010100000000000
00000010100000000000
00000000000010010000
00000000000010010000
Different CFs set within combinatorial structure:
CF 1: 012345678120473865734856021453687210605138742876201354281764503347520186568012437
CF 2: 012345678120473865734856021453687210205138746876201354681724503347560182568012437
CF 3: 012345678120478536863502714306751842754860321638014257475283160541627083287136405
CF 4: 012345678123758064584063217760831542651274830237486105845107326408612753376520481
CF 5: 012345678120476835368204751836521407754163280681037542475810326547682013203758164
CF 6: 012345678120486735834752061685174203347560182706238514251807346473621850568013427
CF 7: 012345678120486753783601245678530124201864537345127860867053412534712086456278301
CF 8: 012345678120568743586734120461850237235476801807213465743102586354687012678021354
CF 9: 012345678120478536863502714306751842754863021638014257475280163541627380287136405
CF 10: 012345678123678405756481320370862541487150263864713052531204786245036817608527134
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{2:4, 8:12, 10:4}
325. Structure 20N72M20C
DLSs within combinatorial structure:
DLS 1: 012345678120478356805637241261750483587264130674183502453016827346802715738521064
DLS 2: 012345678273650841346208157580472316861037425738521064127864530405716283654183702
DLS 3: 012345678273610845346208157580472316865037421738521064127864530401756283654183702
DLS 4: 012345678587204136201657483463710825340862517654183702875036241126478350738521064
DLS 5: 012345678580274136201657483463710825347862510654183702875036241126408357738521064
...
DLS 16: 012345678263017845347268150586402317805736421738521064120874536471650283654183702
DLS 17: 012345678873650421386402157520874316461037285738521064147268530205716843654183702
DLS 18: 012345678873610425386402157520874316465037281738521064147268530201756843654183702
DLS 19: 012345678283657401376480152508274316461738025730521864147862530825016743654103287
DLS 20: 012345678283617405376480152508274316465738021730521864147862530821056743654103287
Adjacency matrix:
01100000000000000000
10011111111100000000
10011111111100000000
01100000000011111100
01100000000011111100
01100000000011111100
01100000000011111100
01100000000000000000
01100000000011111111
01100000000011111111
01100000000011111100
01100000000011111100
00011110111100000000
00011110111100000000
00011110111100000000
00011110111100000000
00011110111100000000
00011110111100000000
00000000110000000000
00000000110000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478356805637241261750483587264130674183502453016827346802715738521064
CF 2: 012345678120468537206137485873502164654870321738014256341756802465283710587621043
CF 3: 012345678120486735401837526685710342734561280856123407567204813348672051273058164
CF 4: 012345678120476835567284013603817542854163207736521480471058326348602751285730164
CF 5: 012345678120486735671038542485710326734561280856123407567204813348672051203857164
...
CF 16: 012345678120567834765834021307482156873610245281756403546278310654103782438021567
CF 17: 012345678120456837564873021301764582738012465647528103456287310873601254285130746
CF 18: 012345678120463857504681732468750321687234105753128064876012543345876210231507486
CF 19: 012345678123460857678012345254681703345876210507234186730128564861507432486753021
CF 20: 012345678120476853405837126687150342734561280356728401863204715541682037278013564
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{2:4, 8:12, 10:4}
326. Structure 20N73M10C
DLSs within combinatorial structure:
DLS 1: 012345678123786450256478103401857236764531082837204561580163724345620817678012345
DLS 2: 012345678834201567587064231256130784108753426723486150461527803670812345345678012
DLS 3: 012345678834201567587064231265130784108753426723486150451627803670812345346578012
DLS 4: 012345678834201567507864231256130784180753426723486150461527803678012345345678012
DLS 5: 012345678834201567507864231265130784180753426723486150451627803678012345346578012
...
DLS 16: 012345678123786450756420183401857236264531807387204561530168724845673012678012345
DLS 17: 012345678123786450756420183401857236264531807837204561580163724345678012678012345
DLS 18: 012345678123786450756420183401857326264531807837204561580162734345678012678013245
DLS 19: 012345678834201567507864231256130784180753426723486105461027853678512340345678012
DLS 20: 012345678834201567507814236256130784680753421723486105461027853178562340345678012
Adjacency matrix:
01111111100000000000
10000000011111111100
10000000011101101100
10000000011111111100
10000000011101101100
10000000011101101100
10000000011101101100
10000000011101101100
10000000011101101100
01111111100000000000
01111111100000000000
01111111100000000011
01010000000000000000
01111111100000000000
01111111100000000000
01010000000000000010
01111111100000000011
01111111100000000000
00000000000100011000
00000000000100001000
Different CFs set within combinatorial structure:
CF 1: 012345678123786450256478103401857236764531082837204561580163724345620817678012345
CF 2: 012345678123786450756428103401857236264531087837204561580163724345670812678012345
CF 3: 012345678123786450756428103401857326264531087837204561580162734345670812678013245
CF 4: 012345678123786450756420183401857236264531807837204561580163724345678012678012345
CF 5: 012345678123786450756420183401857326264531807837204561580162734345678012678013245
CF 6: 012345678123687540387150264650423817245768103834571026471806352506234781768012435
CF 7: 012345678123786450256470183401857236764531802837204561580163724345628017678012345
CF 8: 012345678123657840357180264680423517245768103834571026471806352506234781768012435
CF 9: 012345678123786450256470183401857236764531802387204561530168724845623017678012345
CF 10: 012345678123786450756420183401857236264531807387204561530168724845673012678012345
Ascending sorted vector of vertices powers:
[2, 2, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{2:2, 3:2, 8:12, 10:4}
327. Structure 20N74M20C
DLSs within combinatorial structure:
DLS 1: 012345678120467835605738412234680157857014263781203546346851720473526081568172304
DLS 2: 012345678784630512463527081578162304346851720120476835857014263235708146601283457
DLS 3: 012345678734608512468527301570162834346851720123476085857014263205783146681230457
DLS 4: 012345678781630542163527084578462301346851720420176835857014263235708416604283157
DLS 5: 012345678731608542168527304570462831346851720423176085857014263205783416684230157
...
DLS 16: 012345678128467305635780412284603157857014263701238546346851720470526831563172084
DLS 17: 012345678168472305275680413784203156853014267601738542346851720420567831537126084
DLS 18: 012345678168472305235680417784203156857014263601738542346851720420567831573126084
DLS 19: 012345678784630512463527081578162403346851720120476835857013264235708146601284357
DLS 20: 012345678684230517473562081528176403346851720160427835857013264735608142201784356
Adjacency matrix:
01111111100000000000
10000000011111111100
10000000011110110100
10000000011111111100
10000000011110110100
10000000011110110100
10000000011110110100
10000000011110110100
10000000011110110100
01111111100000000000
01111111100000000000
01111111100000000000
01111111100000000000
01010000000000000010
01111111100000000011
01111111100000000000
01010000000000000010
01111111100000000011
00000000000001101100
00000000000000100100
Different CFs set within combinatorial structure:
CF 1: 012345678120467835605738412234680157857014263781203546346851720473526081568172304
CF 2: 012345678120467835347851260281630457856014723605783142734208516463572081578126304
CF 3: 012345678120476835368721504473562081854610723736084152207158346541837260685203417
CF 4: 012345678120468357358206741834752016587631402675124830746580123201873564463017285
CF 5: 012345678120476835846051723631780452357814260785203146204638517463527081578162304
...
CF 16: 012345678120478536764581023601832745835017462358726104476250381247163850583604217
CF 17: 012345678120583746364872510285761034748630251431256807857024163506417382673108425
CF 18: 012345678120568347748206153583617402674152830461073285356480721835724016207831564
CF 19: 012345678120768453583176024247853106754612380601284537836520741375401862468037215
CF 20: 012345678120473865854610723547821306638157240375206481763084152201768534486532017
Ascending sorted vector of vertices powers:
[2, 3, 3, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{2:1, 3:2, 4:1, 8:12, 10:4}
328. Structure 20N76M8C
DLSs within combinatorial structure:
DLS 1: 012345678123864705805476231740621853681732540376518024257103486564087312438250167
DLS 2: 012345678735281064186732540654103782508476231827054316471620853340568127263817405
DLS 3: 012345678738251064186732540654103782805476231527084316471620853340568127263817405
DLS 4: 012345678745281063186732540653104782508476231827053416371620854430568127264817305
DLS 5: 012345678748251063186732540653104782805476231527083416371620854430568127264817305
...
DLS 16: 012345678748561023186732540523104786805476231267083415371250864430628157654817302
DLS 17: 012345678731560824186732540524813706805476231267104385470258163348621057653087412
DLS 18: 012345678741560823186732540523814706805476231267103485370258164438621057654087312
DLS 19: 012345678731250864186732540654813702805476231527104386470628153348561027263087415
DLS 20: 012345678741250863186732540653814702805476231527103486370628154438561027264087315
Adjacency matrix:
01111000000000000000
10000111000000000000
10000111111111000000
10000111000000000000
10000111111111000000
01111000000000111111
01111000000000111111
01111000000000000000
00101000000000111111
00101000000000111111
00101000000000111111
00101000000000111111
00101000000000111111
00101000000000111111
00000110111111000000
00000110111111000000
00000110111111000000
00000110111111000000
00000110111111000000
00000110111111000000
Different CFs set within combinatorial structure:
CF 1: 012345678123864705805476231740621853681732540376518024257103486564087312438250167
CF 2: 012345678120476835734680152561837240248751306685203417856014723307128564473562081
CF 3: 012345678123867405805476231470621853681732540346518027254103786567084312738250164
CF 4: 012345678120476835734680152561827340348751206685203417856014723207138564473562081
CF 5: 012345678123874506346580721654702183208637415875461032731256840460128357587013264
CF 6: 012345678123874506346580721604752183258637410875461032731206845460128357587013264
CF 7: 012345678128507436563428710481672053740856321357164802874230165206713584635081247
CF 8: 012345678120568743758406321583671402634752810461037285346280157875124036207813564
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{4:4, 8:12, 10:4}
329. Structure 20N76M10C
DLSs within combinatorial structure:
DLS 1: 012345678123786450364521087458132706245670813706458132581067324837204561670813245
DLS 2: 012345678834201567108763425281657034570812346657034281465128703723486150346570812
DLS 3: 012345678837201564108463725281654037570812346654037281765128403423786150346570812
DLS 4: 012345678534201867186753420201867534678012345867534201450126783723480156345678012
DLS 5: 012345678537201864186453720201864537678012345864537201750126483423780156345678012
...
DLS 16: 012345678267831504123480756831504267678012345504267831786153420450726183345678012
DLS 17: 012345678564231807183750426231807564678012345807564231456123780720486153345678012
DLS 18: 012345678567231804183450726231804567678012345804567231756123480420786153345678012
DLS 19: 012345678234801567126783450801567234678012345567234801480156723753420186345678012
DLS 20: 012345678237801564126483750801564237678012345564237801780156423453720186345678012
Adjacency matrix:
01111000000000000000
10000111000000000000
10000111000000000000
10000111111111000000
10000111111111000000
01111000000000000000
01111000000000111111
01111000000000111111
00011000000000111111
00011000000000111111
00011000000000111111
00011000000000111111
00011000000000111111
00011000000000111111
00000011111111000000
00000011111111000000
00000011111111000000
00000011111111000000
00000011111111000000
00000011111111000000
Different CFs set within combinatorial structure:
CF 1: 012345678123786450364521087458132706245670813706458132581067324837204561670813245
CF 2: 012345678123758406358406127406183752587064231831527064764231580670812345245670813
CF 3: 012345678120568743743821065867102354206453817435687120581076432674230581358714206
CF 4: 012345678120486753681750324834561207368274015475038162756123480547602831203817546
CF 5: 012345678123460857458723061237681405601534782584207136376812540845076213760158324
CF 6: 012345678120487365463721580785164023546073812657208134231856407804632751378510246
CF 7: 012345678123458067846072513234581706507634182681207435750163824375816240468720351
CF 8: 012345678120478536408736125671582340534867201253014867365201784847653012786120453
CF 9: 012345678120486753486753120261834507345678012537201864753120486804567231678012345
CF 10: 012345678120478536608534127453712860367251084271086345536827401845603712784160253
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{4:4, 8:12, 10:4}
330. Structure 20N81M10C
DLSs within combinatorial structure:
DLS 1: 012345678120576843485163027673802451856014732341627580207458316734280165568731204
DLS 2: 012345678248637510673802451485163027301758246134276805820514763567021384756480132
DLS 3: 012345678248637510673802451485163027301758246834276105120584763567021384756410832
DLS 4: 012345678548637210673802451485163027301728546134576802850214763267051384726480135
DLS 5: 012345678548637210673802451485163027301728546834576102150284763267051384726410835
...
DLS 16: 012345678120586743485163027673802451756014832341627580207458316834270165568731204
DLS 17: 012345678120586743485163027673802451756014832348627510207451386834270165561738204
DLS 18: 012345678120576843485163027673802451856014732348627510207451386734280165561738204
DLS 19: 012345678620581743485163027173802456756014832348627510207456381834270165561738204
DLS 20: 012345678620571843485163027173802456856014732348627510207456381734280165561738204
Adjacency matrix:
01111111111000000000
10000000000111111100
10000000000111111100
10000000000111111100
10000000000111111100
10000000000010100100
10000000000111111111
10000000000111111111
10000000000111111111
10000000000111111111
10000000000010100101
01111011110000000000
01111111111000000000
01111011110000000000
01111111111000000000
01111011110000000000
01111011110000000000
01111111111000000000
00000011110000000000
00000011111000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120576843485163027673802451856014732341627580207458316734280165568731204
CF 2: 012345678120486753345678012586703124678012345837264501204531867461857230753120486
CF 3: 012345678120483756345678012583706124678012345867234501204561837431857260756120483
CF 4: 012345678120486753345678012586703124678012345831264507204537861467851230753120486
CF 5: 012345678120483756345678012583706124678012345861234507204567831437851260756120483
CF 6: 012345678124567830537284061708612543260853417386401725841720356475036182653178204
CF 7: 012345678120473865483561027561724380834610752675208431207836514756082143348157206
CF 8: 012345678120576843485163027673802451856014732348627510207451386734280165561738204
CF 9: 012345678120473865483561027568724310834610752675208431207136584756082143341857206
CF 10: 012345678124567830537824061708612543860253417386401725241780356475036182653178204
Ascending sorted vector of vertices powers:
[4, 4, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{4:2, 5:2, 8:8, 10:8}
331. Structure 21N29M6C
DLSs within combinatorial structure:
DLS 1: 012345678124678305387061452435187260546832017608524731871406523763250184250713846
DLS 2: 012345678275403816423610785107862354380754261751086423564238107836127540648571032
DLS 3: 012345678638210745541837026286573401764128530875604312327061854450782163103456287
DLS 4: 012345678638270541547831026286153407164528730875604312321067854450782163703416285
DLS 5: 012345678638210745541837026286571403763428510875604132427063851150782364304156287
...
DLS 17: 012345678275034816324610785741862350480753162157486023563108247806271534638527401
DLS 18: 012345678475603812623410785107824356380752461751086243546238107834167520268571034
DLS 19: 012345678275034816324610785147862350480753261751486023563208147806127534638571402
DLS 20: 012345678485673012623418705108724356370852461751086243546230187834167520267501834
DLS 21: 012345678285473016423618705108762354370854261751086423564230187836127540647501832
Adjacency matrix:
010000000000000000000
101111111111000000000
010000000010111111111
010000000000000001100
010000000000000101000
010000000000000100001
010000000000000000000
010000000000000000000
010000000000000000101
010000000000000000000
011000000000000000000
010000000000000000000
001000000000000000000
001000000000000000000
001000000000000000000
001011000000000000000
001000000000000000000
001110000000000000000
001100001000000000000
001000000000000000000
001001001000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678124678305387061452435187260546832017608524731871406523763250184250713846
CF 2: 012345678124658703431806527673584012708431265846127350587062431365270184250713846
CF 3: 012345678124608753431856027673584210708431562846127305587260431365072184250713846
CF 4: 012345678124608735451836027648721503807154362765483210386072451573260184230517846
CF 5: 012345678230476815624183750785614023478051362841207536156830247503762184367528401
CF 6: 012345678235476801624183750780654123478510362841207536506831247153762084367028415
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 11, 11]
Multiset of vertices powers:
{1:10, 2:1, 3:8, 11:2}
332. Structure 21N39M21C
DLSs within combinatorial structure:
DLS 1: 012345678123457860748026135487602513650138247365781402834560721201874356576213084
DLS 2: 012345678836204751365781402501867324274513086748026135453178260127650843680432517
DLS 3: 012345678876204351365781402501863724234517086748026135457138260123650847680472513
DLS 4: 012345678183657420746028135827406513450132867365781204234510786608274351571863042
DLS 5: 012345678423157860748026135187602543650438217365781402834510726206874351571263084
...
DLS 17: 012345678876204351635781402501836724764512083248073165457168230123650847380427516
DLS 18: 012345678876204351365781402501863724734512086248076135457138260123650847680427513
DLS 19: 012345678876204351635781402501836724264517083748023165457168230123650847380472516
DLS 20: 012345678183657024746082135827406513450138267365721840234510786608274351571863402
DLS 21: 012345678183657420746082135827406513450138267365721804234510786608274351571863042
Adjacency matrix:
011000000000000000000
100111111110000000000
100111111111000000000
011000000000111100000
011000000000000011100
011000000000000001000
011000000000000000000
011000000000000000000
011000000000000000000
011000000000000011100
011000000000000001000
001000000000111100000
000100000001000000000
000100000001000000000
000100000001000000011
000100000001000000011
000010000100000000000
000011000110000000000
000010000100000000000
000000000000001100000
000000000000001100000
Different CFs set within combinatorial structure:
CF 1: 012345678123457860748026135487602513650138247365781402834560721201874356576213084
CF 2: 012345678123478560465821037601752483258037146340186752734560821876204315587613204
CF 3: 012345678123078546258637104587413260601752483374206815830164752465821037746580321
CF 4: 012345678123658704675810432758421360840163257364507821587032146431276085206784513
CF 5: 012345678123567804574628130680172543846730251358416027235804716467051382701283465
...
CF 17: 012345678123678504651807432587413260764052813340186725806724351475231086238560147
CF 18: 012345678123478560465821037651702483208537146340186725734260851876054312587613204
CF 19: 012345678123608547456817032504782163785130426368524710231476805870261354647053281
CF 20: 012345678123657804684512730805723461748160253360481527571208346457036182236874015
CF 21: 012345678123658704675810432758431260840162357364507821587023146431276085206784513
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 9, 10]
Multiset of vertices powers:
{2:10, 3:2, 4:3, 5:3, 6:1, 9:1, 10:1}
333. Structure 21N42M21C
DLSs within combinatorial structure:
DLS 1: 012345678123604857485021763367850124658732041534167280876513402740286315201478536
DLS 2: 012345678235018764528467310470632851841270536786521403354106287607853142163784025
DLS 3: 012345678235018764528407316470632851841276530786521403354160287607853142163784025
DLS 4: 012345678231058764528467310470632851845270136786521403354106287607813542163784025
DLS 5: 012345678231058764528407316470632851845276130786521403354160287607813542163784025
...
DLS 17: 012345678235018467528704316470632851841276530386521704754160283603857142167483025
DLS 18: 012345678231058467528704316470632851845276130386521704754160283603817542167483025
DLS 19: 012345678235018467528764310470632851841270536386521704754106283603857142167483025
DLS 20: 012345678231058467528764310470632851845270136386521704754106283603817542167483025
DLS 21: 012345678123607845684023751267850314578412063435276180846731502750184236301568427
Adjacency matrix:
011110000000000000000
100001111111000000000
100001111111000000000
100001111111000000000
100001111111000000000
011110000000000000000
011110000000000000000
011110000000000000000
011110000000000000000
011110000000000000000
011110000000111111110
011110000000000000000
000000000010000000000
000000000010000000000
000000000010000000001
000000000010000000001
000000000010000000000
000000000010000000000
000000000010000000000
000000000010000000000
000000000000001100000
Different CFs set within combinatorial structure:
CF 1: 012345678123604857485021763367850124658732041534167280876513402740286315201478536
CF 2: 012345678120486357876513402345870126458732061534167280687021543763204815201658734
CF 3: 012345678120486357876523401345870126458731062534167280687012543763204815201658734
CF 4: 012345678123680457358712046586473210735068124647251803801534762274806531460127385
CF 5: 012345678123680457358712046786453210537068124645271803801534762274806531460127385
...
CF 17: 012345678120458736473586201745630182258017463386724510604173825867201354531862047
CF 18: 012345678120458736473586201745620183358017462286734510604173825867201354531862047
CF 19: 012345678120478536658734012387506421403612785564287103275861340841053267736120854
CF 20: 012345678120478536658734012307586421483612705564207183275861340841053267736120854
CF 21: 012345678120486357368521704685703421573618042731254860846072513204867135457130286
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12]
Multiset of vertices powers:
{1:6, 2:3, 4:7, 8:4, 12:1}
334. Structure 22N36M22C
DLSs within combinatorial structure:
DLS 1: 012345678120567834473108562546832107854673021735416280261780453308254716687021345
DLS 2: 012345678468253710605712483731480256187026345843507162526134807270861534354678021
DLS 3: 012345678768253410605412783431780256187026345873504162526137804240861537354678021
DLS 4: 012345678126507834473168502540832167854673021735416280261780453308254716687021345
DLS 5: 012345678146507832273168504520834167854673021735216480461780253308452716687021345
...
DLS 18: 012345678140567832273108564526834107854673021438216750761450283305782416687021345
DLS 19: 012345678127506834463178502540832167854763021638417250271650483305284716786021345
DLS 20: 012345678147506832263178504520834167854763021638217450471650283305482716786021345
DLS 21: 012345678127506834463178502540832167854763021635417280271680453308254716786021345
DLS 22: 012345678147506832263178504520834167854763021635217480471680253308452716786021345
Adjacency matrix:
0110000000000000000000
1001111111111111110000
1001111111111111111111
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0010000000000000000000
0010000000000000000000
0010000000000000000000
0010000000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120567834473108562546832107854673021735416280261780453308254716687021345
CF 2: 012345678120576834735824016684152703857460321408713562271638450346207185563081247
CF 3: 012345678123567804847051362584672031356814720268403157735280416470126583601738245
CF 4: 012345678120567834873204561546832107354178026738416250261750483405683712687021345
CF 5: 012345678123568740705284316570612834264873051486031527831720465357406182648157203
...
CF 18: 012345678123507864678120435306472581847651203265083147481236750534768012750814326
CF 19: 012345678123486057857604312540132786384761205765028431231870564678253140406517823
CF 20: 012345678123068754806453127257810346540672813781234065634107582465781230378526401
CF 21: 012345678120567834783204561546832107354178026837416250261750483405683712678021345
CF 22: 012345678123750864608127435356402781845671203284063157761238540437586012570814326
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 16, 20]
Multiset of vertices powers:
{1:4, 2:16, 16:1, 20:1}
335. Structure 22N40M6C
DLSs within combinatorial structure:
DLS 1: 012345678123870564785061342568427130476218053641583207834106725307652481250734816
DLS 2: 012345678467018325874206513231850746758432160520761834386574201643187052105623487
DLS 3: 012345678874653210258137064603214587187560432430721856765482301521806743346078125
DLS 4: 012345678876532410321860745785614302564723081247058163103486527450271836638107254
DLS 5: 012345678876532410325680741758164302184723056247016583603451827460278135531807264
...
DLS 18: 012345678163078524857201463246583107470816235321764850785120346504632781638457012
DLS 19: 012345678874653210208134567643210785180567432735421806567082341421876053356708124
DLS 20: 012345678874653210153287064601834527327560481480712356765428103538106742246071835
DLS 21: 012345678874653210103284567641830725320567481785412306567028143438176052256701834
DLS 22: 012345678876524310748216053130652847657430281205781436384167502463078125521803764
Adjacency matrix:
0110000000000000000000
1001111100000000000000
1000000011111000000000
0100000000000111000000
0100000000000111000000
0100000000000111000000
0100000000000111110000
0100000000000000000000
0010000000000000001110
0010000000000000001110
0010000000000000000000
0010000000000000011111
0010000000000000001110
0001111000000000000000
0001111000000000000000
0001111000000000000000
0000001000000000000000
0000001000010000000000
0000000011011000000000
0000000011011000000000
0000000011011000000000
0000000000010000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123870564785061342568427130476218053641583207834106725307652481250734816
CF 2: 012345678123058764485627301856401237631872540748563012564780123307216485270134856
CF 3: 012345678123058764564807123648523017831670542756481230485762301307216485270134856
CF 4: 012345678123458706507684321465132087230867415874513260351076842648720153786201534
CF 5: 012345678230178564526431087157803246308654712463217850871026435645780123784562301
CF 6: 012345678123708564784652103846523710538076241657481032465810327301267485270134856
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6]
Multiset of vertices powers:
{1:4, 2:2, 4:12, 6:4}
336. Structure 22N40M12C
DLSs within combinatorial structure:
DLS 1: 012345678120478563378064152685103724437652081856217430564820317201736845743581206
DLS 2: 012345678685023741847601523753480162568214307201736854436157280120578436374862015
DLS 3: 012345678684023751857601423743580162568214307201736845436157280120478536375862014
DLS 4: 012345678823471560378064152685103724437652081156287403564820317201736845740518236
DLS 5: 012345678823571460378064152685103724437652081146287503564820317201736845750418236
...
DLS 18: 012345678478562013346187250865213407734850162120478536587601324201736845653024781
DLS 19: 012345678685023741847601523753480162578214306201736854436157280120568437364872015
DLS 20: 012345678684023751857601423743580162578214306201736845436157280120468537365872014
DLS 21: 012345678684203751857621403743580162568014327201736845436157280120478536375862014
DLS 22: 012345678684203751857621403743580162578014326201736845436157280120468537365872014
Adjacency matrix:
0110000000000000000000
1001111111000000000000
1001111111111111110000
0110000000000000000000
0110000000000000001100
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000001100
0110000000000000000000
0010000000000000000010
0010000000000000000010
0010000000000000000010
0010000000000000000111
0010000000000000000010
0010000000000000000010
0010000000000000000010
0010000000000000000111
0000100010000000000000
0000100010000100010000
0000000000111111110000
0000000000000100010000
Different CFs set within combinatorial structure:
CF 1: 012345678120478563378064152685103724437652081856217430564820317201736845743581206
CF 2: 012345678123476805836120457470852163508234716385617024241768530657081342764503281
CF 3: 012345678123476805836120457470852163568234710385617024241708536657081342704563281
CF 4: 012345678123674850647508213501863724235417086458026137874250361360781542786132405
CF 5: 012345678123586047407831265784610352270153486638724510541267803865072134356408721
...
CF 8: 012345678123678450687504213501863724235417086458026137874250361360781542746132805
CF 9: 012345678143507826387261045860124537608753412254678301571036284435812760726480153
CF 10: 012345678120567834473682105638410527764058213385721460856203741547136082201874356
CF 11: 012345678120486537673528014408751263854163702367204851285037146541672380736810425
CF 12: 012345678123576804836120547470852163568234710384617025251708436647081352705463281
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 8, 8, 16]
Multiset of vertices powers:
{2:14, 4:5, 8:2, 16:1}
337. Structure 22N40M22C
DLSs within combinatorial structure:
DLS 1: 012345678123487560756130482604851237548072316367524801480763125831206754275618043
DLS 2: 012345678231806754804561327156720483375618042780452136567234801423187560648073215
DLS 3: 012345678231806457807561324156420783375618042480752136564237801723184560648073215
DLS 4: 012345678123487560756138402504861237648072315367524081480753126831206754275610843
DLS 5: 012345678123487560756138402604851237548072316367524081480763125831206754275610843
...
DLS 18: 012345678423187560756430182601854327548073216367521804180762435834206751275618043
DLS 19: 012345678231806754804561327156720483375618042780452136567234810423087561648173205
DLS 20: 012345678231806457807561324156420783375618042480752136564237810723084561648173205
DLS 21: 012345678236801754804516327651720483375168042780452136567234801423687510148073265
DLS 22: 012345678236801457807516324651420783375168042480752136564237801723684510148073265
Adjacency matrix:
0110000000000000000000
1001111111111111110000
1001111111111111110000
0110000000000000001100
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000001111
0110000000000000000011
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0001000100000000000000
0001000100000000000000
0000000110000000000000
0000000110000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123487560756130482604851237548072316367524801480763125831206754275618043
CF 2: 012345678120487563634258107765124380348570216481036752503761824857602431276813045
CF 3: 012345678123487065608153427457631280540872316781064532365728104834206751276510843
CF 4: 012345678123487560756138402504861237648072315367524081480753126831206754275610843
CF 5: 012345678123487560756138402604851237548072316367524081480763125831206754275610843
...
CF 18: 012345678120487365751236480384650721548073216863124507405761832637802154276518043
CF 19: 012345678120483567674258103765124380348570216481036752503761824857602431236817045
CF 20: 012345678123480567378156420457631082540872316781064235865723104634208751206517843
CF 21: 012345678120487563634278105567124380348750216481036752703561824875602431256813047
CF 22: 012345678126438705805721364471652830543876012738104526264083157357260481680517243
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 6, 16, 16]
Multiset of vertices powers:
{2:17, 4:2, 6:1, 16:2}
338. Structure 22N41M22C
DLSs within combinatorial structure:
DLS 1: 012345678120486753485671230673154802247063185534728016861507324706832541358210467
DLS 2: 012345678251708346836257014704832561368510427120674853643021785475186230587463102
DLS 3: 012345678251708346836257014304872561768510423120634857643021785475186230587463102
DLS 4: 012345678120476853475681230683154702247063185534728016861507324706832541358210467
DLS 5: 012345678420176853175684230683451702247063185531728046864507321706832514358210467
...
DLS 18: 012345678423186750185674203670421835547063182231758046864507321706832514358210467
DLS 19: 012345678271508346836257014504832761368710425120674853643021587457186230785463102
DLS 20: 012345678251708346836157024704831562368520417120674853643012785475286130587463201
DLS 21: 012345678251708346836157024304871562768520413120634857643012785475286130587463201
DLS 22: 012345678271508346836157024504831762368720415120674853643012587457286130785463201
Adjacency matrix:
0110000000000000000000
1001111111111111110000
1001111111111111110000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000001000
0110000000000000001000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000110
0110000000000000000000
0110000000000000001111
0110000000000000001000
0000000011000000110000
0000000000000010100000
0000000000000010100000
0000000000000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678120486753485671230673154802247063185534728016861507324706832541358210467
CF 2: 012345678120487563586731024401863752348570216765124380634258107857602431273016845
CF 3: 012345678123487065356728104701864532548072316467531280680153427834206751275610843
CF 4: 012345678120476853475681230683154702247063185534728016861507324706832541358210467
CF 5: 012345678120487365486751032863124507548073216304568721751236480637802154275610843
...
CF 18: 012345678120687435768210543436521780351768204875034126687402351543876012204153867
CF 19: 012345678120487563586731024301864752438570216765123480643258107857602341274016835
CF 20: 012345678120487563786531024401863752348750216567124380634278105875602431253016847
CF 21: 012345678123487506548120763367504821276831045485276130701653482850762314634018257
CF 22: 012345678120487563786531024301864752438750216567123480643278105875602341254016837
Ascending sorted vector of vertices powers:
[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 6, 16, 16]
Multiset of vertices powers:
{1:1, 2:13, 3:3, 4:2, 6:1, 16:2}
339. Structure 22N42M22C
DLSs within combinatorial structure:
DLS 1: 012345678123586704506824137784153062648072315370218546835760421267431850451607283
DLS 2: 012345678381457062154760283628534701870213546243076815467821350735608124506182437
DLS 3: 012345678381754062157460283628537401870213546243076815764821350435608127506182734
DLS 4: 012345678381407562154760283628534701875213046243076815467821350730658124506182437
DLS 5: 012345678381704562157460283628537401875213046243076815764821350430658127506182734
...
DLS 18: 012345678381457062254760183628534701870123546143076825467812350735608214506281437
DLS 19: 012345678381407562254760183628534701875123046143076825467812350730658214506281437
DLS 20: 012345678381704562257460183628537401875123046143076825764812350430658217506281734
DLS 21: 012345678381754062257460183628537401876123540143076825704812356435608217560281734
DLS 22: 012345678381754062257460183628537401870123546143076825764812350435608217506281734
Adjacency matrix:
0111100000000000000000
1000011111111100000000
1000001100111000000000
1000001000101000000000
1000001000101000000000
0100000000000010000000
0111100000000011000000
0110000000000011000000
0100000000000000000000
0100000000000010110000
0111100000000011111111
0110000000000011000000
0111100000000000000000
0100000000000000000000
0000011101110000000000
0000001100110000000000
0000000001100000000000
0000000001100000000000
0000000000100000000000
0000000000100000000000
0000000000100000000000
0000000000100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123586704506824137784153062648072315370218546835760421267431850451607283
CF 2: 012345678123458067846073512287501436501632784634287105760124853375816240458760321
CF 3: 012345678123608745608453127531762480487531062274016853346827501850274316765180234
CF 4: 012345678120478536367251084608512347734860251253784160471603825845036712586127403
CF 5: 012345678123586704706854132584123067648072315370218546835607421267431850451760283
...
CF 18: 012345678123458067846073512387501426501632784634287105760124853275816340458760231
CF 19: 012345678123458067846073512307581426581632704634207185760124853275816340458760231
CF 20: 012345678123786054876504312768430125584671203405213867231867540340152786657028431
CF 21: 012345678123076854781254063658423701340762185507138426834607512476581230265810347
CF 22: 012345678123806745608534127274610853487153062351267480546728301830472516765081234
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 10, 12]
Multiset of vertices powers:
{1:6, 2:3, 4:8, 6:3, 10:1, 12:1}
340. Structure 22N44M18C
DLSs within combinatorial structure:
DLS 1: 012345678123456807487061235768534012870612543356708421245170386534287160601823754
DLS 2: 012345678361824750653708421520483167248570316487261035876012543705136284134657802
DLS 3: 012345678261834750653708421520483167348570216487261035876012543705126384134657802
DLS 4: 012345678523786104784061235465137082170652843356408721241870356837214560608523417
DLS 5: 012345678523786104784061235468137052170652843356408721241570386837214560605823417
...
DLS 18: 012345678123486507487061235768534012570612843356708421245170386834257160601823754
DLS 19: 012345678364821750653708124520183467248570316187264035876012543705436281431657802
DLS 20: 012345678264831750653708124520183467348570216187264035876012543705426381431657802
DLS 21: 012345678348620715853714026625103847206478351487256130174082563760531284531867402
DLS 22: 012345678248630715853714026625103847306478251487256130174082563760521384531867402
Adjacency matrix:
0110000000000000000000
1001111111111111110000
1001111111111111110000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000001100
0110000000000000001100
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000000000
0110000000000000001111
0110000000000000001111
0110000000000000000000
0000000110000001100000
0000000110000001100000
0000000000000001100000
0000000000000001100000
Different CFs set within combinatorial structure:
CF 1: 012345678123456807487061235768534012870612543356708421245170386534287160601823754
CF 2: 012345678123786450645078312564807231378612045780453126456120783801234567237561804
CF 3: 012345678123486750645078312567804231378612045480753126756120483801237564234561807
CF 4: 012345678123786504784061235468537012570612843356408721245170386837254160601823457
CF 5: 012345678124768035685107423437850261578614302860273514346521780253086147701432856
...
CF 14: 012345678123456807487061235761534082870612543356708421245870316534287160608123754
CF 15: 012345678123487560476530182680173425748051236365728014834206751501862347257614803
CF 16: 012345678123487560476530182780163425648051237365728014834206751501872346257614803
CF 17: 012345678123867054784026135537682401670534812865701243346178520201453786458210367
CF 18: 012345678123867045785026134437682501670534812864701253356178420201453786548210367
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 16, 16]
Multiset of vertices powers:
{2:14, 4:4, 6:2, 16:2}
341. Structure 22N44M22C
DLSs within combinatorial structure:
DLS 1: 012345678120467835743816250378650124685271403836524017201738546564103782457082361
DLS 2: 012345678351082764874523016563107482206738541487216305625471830748650123130864257
DLS 3: 012345678351082764874523016503167482260738541487216305625471830748650123136804257
DLS 4: 012345678351028764274583016563107482806732541487216305625471830748650123130864257
DLS 5: 012345678351028764274583016503167482860732541487216305625471830748650123136804257
...
DLS 18: 012345678120867435783416250378650124645271803836524017201738546564103782457082361
DLS 19: 012345678625817430783461205378650124140276853236584017801732546564103782457028361
DLS 20: 012345678625817430783461205378650124140276853836524017201738546564103782457082361
DLS 21: 012345678125867430783416205378650124640271853236584017801732546564103782457028361
DLS 22: 012345678125867430783416205378650124640271853836524017201738546564103782457082361
Adjacency matrix:
0111100000000000000000
1000011111111111111111
1000000111000000000000
1000011111111111111111
1000000111000000000000
0101000000000000000000
0101000000000000000000
0111100000000000000000
0111100000000000000000
0111100000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
0101000000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120467835743816250378650124685271403836524017201738546564103782457082361
CF 2: 012345678123760854705614382346852710684173025857026143531287406268401537470538261
CF 3: 012345678123078546301654782287561403846132057564287130730416825458720361675803214
CF 4: 012345678123478560657014382280137456348651027834206715561720834705863241476582103
CF 5: 012345678123068547301654782286571403847132056564287130730416825458720361675803214
...
CF 18: 012345678120483567487561032574612803836257140653708421701824356248036715365170284
CF 19: 012345678120486753635018247486730125874561302758123460567204831243857016301672584
CF 20: 012345678120486753635018247483750126874561302258173460507624831746832015361207584
CF 21: 012345678120687543483156207657423810348760125765018432231504786876231054504872361
CF 22: 012345678120586347487031265763810452845267103536724810271403586658172034304658721
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 18, 18]
Multiset of vertices powers:
{2:14, 4:6, 18:2}
342. Structure 22N56M22C
DLSs within combinatorial structure:
DLS 1: 012345678123457806751806423807632154346578012260184537485721360534260781678013245
DLS 2: 012345678651208437328761504185427360570813246437056182804632751763184025246570813
DLS 3: 012345678651208734328461507185724360570813246734056182807632451463187025246570813
DLS 4: 012345678423157806754806123807632451346578012260481537185724360531260784678013245
DLS 5: 012345678123457806751086423807632154346578012268104537485721360534260781670813245
...
DLS 18: 012345678465187023784532106837250461348076512506421387123764850251608734670813245
DLS 19: 012345678581023467863701524125467803670812345457286130234650781708134256346578012
DLS 20: 012345678581023764863401527125764803670812345754286130237650481408137256346578012
DLS 21: 012345678381026457865701324123467805570813246457682130634250781708134562246578013
DLS 22: 012345678381026754865401327123764805570813246754682130637250481408137562246578013
Adjacency matrix:
0110000000000000000000
1001110000000000000000
1001110000000000000000
0110000000000000000000
0110001111110000000000
0110001111110000000000
0000110000001100000000
0000110000001100000000
0000110000001100000000
0000110000001111110000
0000110000001100000000
0000110000001111110000
0000001111110000000000
0000001111110000000000
0000000001010000001111
0000000001010000001111
0000000001010000001111
0000000001010000001111
0000000000000011110000
0000000000000011110000
0000000000000011110000
0000000000000011110000
Different CFs set within combinatorial structure:
CF 1: 012345678123457806751806423807632154346578012260184537485721360534260781678013245
CF 2: 012345678123784065308167524765421380540873216481056732854632107637208451276510843
CF 3: 012345678123487560658723104781654032540872316467031285305168427834206751276510843
CF 4: 012345678124586730361852407735421086648270513407638152580167324853704261276013845
CF 5: 012345678123457806751086423807632154346578012268104537485721360534260781670813245
...
CF 18: 012345678120483765783162450476850231358671042804536127641027583537204816265718304
CF 19: 012345678124568703463781520580124367345670812857206134701832456236457081678013245
CF 20: 012345678123764805864501237480136752245678013756483120301827564637250481578012346
CF 21: 012345678123457806281036457457682130346578012708124563865701324534260781670813245
CF 22: 012345678123784560568127304437650182340578216705461823681032457854206731276813045
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8]
Multiset of vertices powers:
{2:2, 4:10, 6:6, 8:4}
343. Structure 22N56M22C
DLSs within combinatorial structure:
DLS 1: 012345678123486750385761024750124386648073215407658132561832407834207561276510843
DLS 2: 012345678287061534134280765861532407375618042623407851756124380408756123540873216
DLS 3: 012345678284061537137280465861532704375618042623704851456127380708456123540873216
DLS 4: 012345678153486720286731054730154286648072315407528163521863407864207531375610842
DLS 5: 012345678153486720286731054730164285548072316407528163621853407864207531375610842
...
DLS 18: 012345678153486720286731054738154206640872315407528163521063487864207531375610842
DLS 19: 012345678453186720286734051728451306640873215107528463534062187861207534375610842
DLS 20: 012345678453186720286734051738451206640872315107528463524063187861207534375610842
DLS 21: 012345678634851207107528463851206734375610842286734051463187520720463185548072316
DLS 22: 012345678637851204104528763851206437375610842286437051763184520420763185548072316
Adjacency matrix:
0110000000000000000000
1001111100000000000000
1001111100000000000000
0110000011111100000000
0110000000100100000000
0110000000000000000000
0110000011111100000000
0110000000100100000000
0001001000000011111100
0001001000000011111100
0001101100000000000000
0001001000000011111100
0001001000000011111100
0001101100000000000000
0000000011011000000000
0000000011011000000000
0000000011011000000011
0000000011011000000000
0000000011011000000011
0000000011011000000000
0000000000000000101000
0000000000000000101000
Different CFs set within combinatorial structure:
CF 1: 012345678123486750385761024750124386648073215407658132561832407834207561276510843
CF 2: 012345678123408765408761532865124307540873216387056124751632480634287051276510843
CF 3: 012345678123487560486750132751824306648073215307561824560132487834206751275618043
CF 4: 012345678120568347387426015463182750246751803804673521571830462635207184758014236
CF 5: 012345678123684705485176230370421856247560183601738542854207361736852014568013427
...
CF 18: 012345678120586347367408251248673510803157462486031725751264803574812036635720184
CF 19: 012345678120586347267438015483162750346751802874603521501827463635270184758014236
CF 20: 012345678120586347267438015483162750346751802804673521571820463635207184758014236
CF 21: 012345678124637805436578120751823064370256481605481732847102356568710243283064517
CF 22: 012345678123786450508167234765421083346570812481053726254638107837204561670812345
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{2:4, 4:8, 6:4, 8:6}
344. Structure 22N68M22C
DLSs within combinatorial structure:
DLS 1: 012345678120458736367281504736820451504167283658734120481502367845673012273016845
DLS 2: 012345678261587304438720156587104263720856431804263517156438720673012845345671082
DLS 3: 012345678261587304428730156587104263730856421804263517156428730673012845345671082
DLS 4: 012345678261587304438720156587104263720856431104263587856431720673012845345678012
DLS 5: 012345678261587304428730156587104263730856421104263587856421730673012845345678012
...
DLS 18: 012345678340258716167483502736820451504167283658712340283504167825671034471036825
DLS 19: 012345678140278536365481702736820451504167283678532140281704365827653014453016827
DLS 20: 012345678140258736367481502736820451504167283658732140281504367825673014473016825
DLS 21: 012345678278514360726830451584167203130458726867203514451026837603782145345671082
DLS 22: 012345678278514360736820451584167203120458736867203514451036827603782145345671082
Adjacency matrix:
0111100000000000000000
1000011111111111111100
1000011111111111111100
1000011111111111111100
1000011111111111111100
0111100000000000000000
0111100000000000000000
0111100000000000000000
0111100000000000000000
0111100000000000000000
0111100000000000000000
0111100000000000000000
0111100000000000000011
0111100000000000000000
0111100000000000000000
0111100000000000000000
0111100000000000000011
0111100000000000000000
0111100000000000000000
0111100000000000000000
0000000000001000100000
0000000000001000100000
Different CFs set within combinatorial structure:
CF 1: 012345678120458736367281504736820451504167283658734120481502367845673012273016845
CF 2: 012345678123486057478651230645720183301568742257134806584072361836207514760813425
CF 3: 012345678120478536763851024608732145384560217875104362457216803241683750536027481
CF 4: 012345678123486057478651230645720183301568742287134506854072361536207814760813425
CF 5: 012345678120478536763851024608732145384560217835104762457216803241687350576023481
...
CF 18: 012345678231486750165732084508274316784061235843107562457610823620853147376528401
CF 19: 012345678123806754786051432847532016260174385475683120531420867608217543354768201
CF 20: 012345678123804756786051432867532014240176385475683120531420867608217543354768201
CF 21: 012345678231587064507864231126453780370612845645078312864231507458706123783120456
CF 22: 012345678231507864507864231126453780378612045645078312864231507450786123783120456
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 16, 16, 16, 16]
Multiset of vertices powers:
{2:2, 4:14, 6:2, 16:4}
345. Structure 22N70M22C
DLSs within combinatorial structure:
DLS 1: 012345678120483567586127430653872104347658021278014356401536782834760215765201843
DLS 2: 012345678251876304834760215748653021403512786120487563365201847576128430687034152
DLS 3: 012345678348607521576128430451836702760251843683072154207514386834760215125483067
DLS 4: 012345678148603527576128430453876102360257841687012354201534786834760215725481063
DLS 5: 012345678328407561576128430651832704740651823283074156407516382834760215165283047
...
DLS 18: 012345678681034752834760215765203841257816304148657023320481567576128430403572186
DLS 19: 012345678251876304834760125748653012403521786120487563365102847576218430687034251
DLS 20: 012345678251836704834760125748653012407521386120487563365102847576218430683074251
DLS 21: 012345678281076354834760125745603812453821706128457063360182547576218430607534281
DLS 22: 012345678281036754834760125745603812457821306128457063360182547576218430603574281
Adjacency matrix:
0100000000000000000000
1011111111100000000000
0100000000011111110000
0100000000011111110000
0100000000011111110000
0100000000011111111111
0100000000000000000000
0100000000011111110000
0100000000011111110000
0100000000011111110000
0100000000011111110000
0011110111100000000000
0011110111100000000000
0011110111100000000000
0011110111100000000000
0011110111100000000000
0011110111100000000000
0011110111100000000000
0000010000000000000000
0000010000000000000000
0000010000000000000000
0000010000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120483567586127430653872104347658021278014356401536782834760215765201843
CF 2: 012345678120483756837620145481532067203867514756014832564178320675201483348756201
CF 3: 012345678120476835831257064706832541347560182685124703254708316473681250568013427
CF 4: 012345678120476835568013427473681250734852061856207314287534106301768542645120783
CF 5: 012345678120478536473582160306157842734860251658014327865203714547621083281736405
...
CF 18: 012345678123760854584637102458123067345876210760458321876012543601284735237501486
CF 19: 012345678120483756837620145481532067203867514765014832654178320576201483348756201
CF 20: 012345678120483756837620145483512067201867534765034812654178320576201483348756201
CF 21: 012345678120453867354876021873601254681534702436287510205768143547120386768012435
CF 22: 012345678120453867354876021873601254281534706436287510605728143547160382768012435
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 12]
Multiset of vertices powers:
{1:6, 8:14, 10:1, 12:1}
346. Structure 22N70M22C
DLSs within combinatorial structure:
DLS 1: 012345678120467835234708156785630412347851260601283547856014723573126084468572301
DLS 2: 012345678285730146423167085560472831856014723178526304347851260731608452604283517
DLS 3: 012345678284730156523167084460572831856014723178426305347851260731608542605283417
DLS 4: 012345678235708146428167305563472081856014723170526834347851260701683452684230517
DLS 5: 012345678234708156528167304463572081856014723170426835347851260701683542685230417
...
DLS 18: 012345678128456307784630251607823415345172860836501742271064583560287134453718026
DLS 19: 012345678468152307781630452607283145345871260234508716876014523520467831153726084
DLS 20: 012345678168452307784630152607283415345871260231508746876014523520167834453726081
DLS 21: 012345678460152837731608452687230145345871260204583716876014523523467081158726304
DLS 22: 012345678160452837734608152687230415345871260201583746876014523523167084458726301
Adjacency matrix:
0111111110000000000000
1000000001111111000000
1000000001111111111111
1000000001111111000000
1000000001111111000000
1000000001111111000000
1000000001111111000000
1000000001111111000000
1000000001111111000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0010000000000000000000
0010000000000000000000
0010000000000000000000
0010000000000000000000
0010000000000000000000
0010000000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120467835234708156785630412347851260601283547856014723573126084468572301
CF 2: 012345678120568734468257013846132507503871462735416280281704356357620841674083125
CF 3: 012345678120487365765830214857123046634571820483016752201658437346702581578264103
CF 4: 012345678123680547536471082658703421874052163740138256487216305365824710201567834
CF 5: 012345678123608547581476302658730421364852710740183256406217835875024163237561084
...
CF 18: 012345678123578460468751203387104526745632081254086137601823745876410352530267814
CF 19: 012345678120486753508127364374610825856074132685203417241738506763851240437562081
CF 20: 012345678120563847468032751385470162743651280604187523876214305537826014251708436
CF 21: 012345678120483567307856214485610732654137820873521046261078453546702381738264105
CF 22: 012345678120486357263871405834752016758260143576124830487013562601537284345608721
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 14]
Multiset of vertices powers:
{1:6, 8:15, 14:1}
347. Structure 22N72M22C
DLSs within combinatorial structure:
DLS 1: 012345678120483567834761205653874012768250143287016354401532786576128430345607821
DLS 2: 012345678487032156576128430725401863201576384168253047340687521834760215653814702
DLS 3: 012345678720481563834760215657814302368257041281036754403572186576128430145603827
DLS 4: 012345678120483567834760215653874102768251043287016354401532786576128430345607821
DLS 5: 012345678728401563834760215657814302360257841281036754403572186576128430145683027
...
DLS 18: 012345678687034152576128430765201843401572386148653027320487561834760215253816704
DLS 19: 012345678768201543834760215257816304340157826486032751603574182571628430125483067
DLS 20: 012345678760281543834760215257816304348157026486032751603574182571628430125403867
DLS 21: 012345678740281563438706215257610384364857021801432756683574102576128430125063847
DLS 22: 012345678140283567438706215253670184764851023807412356681534702576128430325067841
Adjacency matrix:
0100000000000000000000
1011111111100000000000
0100000000011111110000
0100000000011111110000
0100000000011111110000
0100000000011111110000
0100000000011111110000
0100000000011111110000
0100000000000000000000
0100000000011111110000
0100000000011111110000
0011111101100000000000
0011111101100000001100
0011111101100000000000
0011111101100000000000
0011111101100000000000
0011111101100000001100
0011111101100000000011
0000000000001000100000
0000000000001000100000
0000000000000000010000
0000000000000000010000
Different CFs set within combinatorial structure:
CF 1: 012345678120483567834761205653874012768250143287016354401532786576128430345607821
CF 2: 012345678120463857531607482468750321687234105753128064346872510875016243204581736
CF 3: 012345678120456837734812065307564182568073421645128703876201354453687210281730546
CF 4: 012345678120483567834760215653874102768251043287016354401532786576128430345607821
CF 5: 012345678120487536734652180501836724658270413473061852865124307347508261286713045
...
CF 18: 012345678120568743408713265835607124674230581746051832351872406267184350583426017
CF 19: 012345678120463857631207485468750312584632701753128064346871520875016243207584136
CF 20: 012345678120463857631287405468750312504632781753128064346871520875016243287504136
CF 21: 012345678123768054634287105750823461385476210468051327876102543547610832201534786
CF 22: 012345678120453867345876210853764021207638145768021354631587402476102583584210736
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{1:4, 2:2, 8:12, 10:4}
348. Structure 22N72M22C
DLSs within combinatorial structure:
DLS 1: 012345678120467835356814720234780516847051263685203147701638452563172084478526301
DLS 2: 012345678285603147847051263178426035356814720463572801520167384631780452704238516
DLS 3: 012345678284603157847051263178526034356814720563472801420167385631780542705238416
DLS 4: 012345678235680147847051263170426385356814720468572031523167804601738452784203516
DLS 5: 012345678234680157847051263170526384356814720568472031423167805601738542785203416
...
DLS 18: 012345678170426835356814720634280517847051263785603142201738456523167084468572301
DLS 19: 012345678234680157847053261170526384356814720568472013423167805601738542785201436
DLS 20: 012345678734280156847053261120567384356814720578426013463172805201638547685701432
DLS 21: 012345678235680147847053261170426385356814720468572013523167804601738452784201536
DLS 22: 012345678735280146847053261120467385356814720478526013563172804201638457684701532
Adjacency matrix:
0111111110000000000000
1000000001111111110000
1000000001111111110000
1000000000111101110000
1000000000111101110000
1000000000111101110000
1000000000111101110000
1000000000111101110000
1000000000111101110000
0110000000000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0110000000000000000000
0111111110000000000000
0111111110000000000000
0111111110000000001111
0000000000000000010000
0000000000000000010000
0000000000000000010000
0000000000000000010000
Different CFs set within combinatorial structure:
CF 1: 012345678120467835356814720234780516847051263685203147701638452563172084478526301
CF 2: 012345678120476853754680132683502417248137506561728340836014725307851264475263081
CF 3: 012345678120467835634708152281630547347851260705283416856014723573126084468572301
CF 4: 012345678120486735834670152368127540241758306675203481756014823507831264483562017
CF 5: 012345678120476835857014263285630147346851720604783512731208456563127084478562301
...
CF 18: 012345678120478536583604217734581062201863754865017423347126805658732140476250381
CF 19: 012345678120456837875014263287630145346871520604583712731208456563127084458762301
CF 20: 012345678120476853356014782478562031241837560567128304734680125803751246685203417
CF 21: 012345678120483567467058213285610734654137820873521046301876452546702381738264105
CF 22: 012345678120467835376814520637580142845071263584203716201638457763152084458726301
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 12]
Multiset of vertices powers:
{1:4, 2:2, 8:13, 10:2, 12:1}
349. Structure 22N74M22C
DLSs within combinatorial structure:
DLS 1: 012345678120463857681207435468750321504631782753128064846072513375816240237584106
DLS 2: 012345678537684102168450327204531786420763851681207435375816240846072513753128064
DLS 3: 012345678537684102168420357204531786450763821681207435375816240846072513723158064
DLS 4: 012345678587604132163458027234581706428760351601237485375816240846072513750123864
DLS 5: 012345678587604132163428057234581706458760321601237485375816240846072513720153864
...
DLS 18: 012345678460753821207584136758120364681237405123468057846072513375816240534601782
DLS 19: 012345678120463857681207435468750312504632781753128064846071523375816240237584106
DLS 20: 012345678120463857601287435468750312584632701753128064846071523375816240237504186
DLS 21: 012345678820763451607284135768150324541637802153428067486072513375816240234501786
DLS 22: 012345678860753421207584136758120364641237805123468057486072513375816240534601782
Adjacency matrix:
0111111110000000000000
1000000001111111110000
1000000001111111110000
1000000000111101110000
1000000000111101110000
1000000000111101110000
1000000000111101110000
1000000000111101111100
1000000000111101111111
0110000000000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0110000000000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0000000110000000000000
0000000110000000000000
0000000010000000000000
0000000010000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120463857681207435468750321504631782753128064846072513375816240237584106
CF 2: 012345678120476835567284013603817542834561207756123480475038126348602751281750364
CF 3: 012345678120486735673058142485710326754163280836521407567204813348672051201837564
CF 4: 012345678123487560251836407465721083804652731637208154780164325576013842348570216
CF 5: 012345678123487560251806437465721083834652701607238154780164325576013842348570216
...
CF 18: 012345678120486753875603421234870165756014832601237584487562310563128047348751206
CF 19: 012345678120463857681207435468750312504632781753128064846071523375816240237584106
CF 20: 012345678120463857601287435468750312584632701753128064846071523375816240237504186
CF 21: 012345678120438756435287160506173842754860231678014523867502314341726085283651407
CF 22: 012345678120486753875604321243870165756013842601237584387562410564128037438751206
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 12]
Multiset of vertices powers:
{1:2, 2:4, 8:12, 10:3, 12:1}
350. Structure 22N74M22C
DLSs within combinatorial structure:
DLS 1: 012345678123758046745801362860137524374560281637284150451672803208416735586023417
DLS 2: 012345678651274803438612750207486135586023417823157046165708324740831562374560281
DLS 3: 012345678451276803638412750207684135586023417823157064145708326760831542374560281
DLS 4: 012345678631274850408612735257486103586023417825107346160738524743851062374560281
DLS 5: 012345678431276850608412735257684103586023417825107364140738526763851042374560281
...
DLS 18: 012345678843157026425708361760831542371560284638412750257684103104276835586023417
DLS 19: 012345678120738546347851062865103724734560281653284107401672835278416350586027413
DLS 20: 012345678823157046145780362760831524374568201638214750457602183201476835586023417
DLS 21: 012345678140738526327851064865103742734560281653482107201674835478216350586027413
DLS 22: 012345678843157026125780364760831542374568201638412750257604183401276835586023417
Adjacency matrix:
0111111110000000000000
1000000001111111000000
1000000001111111110000
1000000001111111001111
1000000001111111001111
1000000001111111000000
1000000001111111000000
1000000001111111000000
1000000001111111000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0010000000000000000000
0010000000000000000000
0001100000000000000000
0001100000000000000000
0001100000000000000000
0001100000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123758046745801362860137524374560281637284150451672803208416735586023417
CF 2: 012345678120483756831507264486750123267834501753126480504261837375618042648072315
CF 3: 012345678120483756831567204486750123207834561753126480564201837375618042648072315
CF 4: 012345678120468357307156482463582710286731045738014526541627803875203164654870231
CF 5: 012345678120468357307126485463582710586731042738014526241657803875203164654870231
...
CF 18: 012345678120678543367451082608512437743860251254783160471036825835204716586127304
CF 19: 012345678120486753843561207756124380438672015674058132281730564567203841305817426
CF 20: 012345678120487563534708216681534702467812350253076184705263841876120435348651027
CF 21: 012345678120487563834760215681574320403812756257036184745623801576108432368251047
CF 22: 012345678120487563534708216681574302463812750257036184705263841876120435348651027
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 12, 12]
Multiset of vertices powers:
{1:2, 2:4, 8:13, 10:1, 12:2}
351. Structure 22N74M22C
DLSs within combinatorial structure:
DLS 1: 012345678120456837734812065687524103568073421305168742476281350853607214241730586
DLS 2: 012345678687530142301724586560472831245168703728013465853607214476281350134856027
DLS 3: 012345678687520143201734586560472831345168702728013465853607214476281350134856027
DLS 4: 012345678685130742307524186760412835241768503128053467853607214476281350534876021
DLS 5: 012345678685120743207534186760412835341768502128053467853607214476281350534876021
...
DLS 18: 012345678160483527724816035287534106538072461605128743476251380853607214341760852
DLS 19: 012345678647531802381720546564872031205164783720483165853607214476218350138056427
DLS 20: 012345678647521803281730546564872031305164782720483165853607214476218350138056427
DLS 21: 012345678670538412381724506564812730245167083127403865853670241406281357738056124
DLS 22: 012345678670528413281734506564812730345167082127403865853670241406281357738056124
Adjacency matrix:
0111111110000000000000
1000000001111111000000
1000000001111111110000
1000000001111111000000
1000000001111111000000
1000000001111111000000
1000000001111111000000
1000000001111111000000
1000000001111111000000
0111111110000000000000
0111111110000000001100
0111111110000000000000
0111111110000000000011
0111111110000000001100
0111111110000000000000
0111111110000000000011
0010000000000000000000
0010000000000000000000
0000000000100100000000
0000000000100100000000
0000000000001001000000
0000000000001001000000
Different CFs set within combinatorial structure:
CF 1: 012345678120456837734812065687524103568073421305168742476281350853607214241730586
CF 2: 012345678120483756837620145706532814451867032283014567564178320675201483348756201
CF 3: 012345678120456837768013425681520743534872061307164582476281350853607214245738106
CF 4: 012345678120486753754163280836521407605738142283017564547602831368274015471850326
CF 5: 012345678120478356865203714586731402754860231638014527473582160347126085201657843
...
CF 18: 012345678120586743487162350245830167376451802604273581831607425563728014758014236
CF 19: 012345678120476835364287051703814562641058327857163204436521780578602413285730146
CF 20: 012345678120476835364287051701834562643058127857163204436521780578602413285710346
CF 21: 012345678120468357438572016705683124856014732361207485284730561573126840647851203
CF 22: 012345678120563847846071523458710362507134286763258014281607435374826150635482701
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{1:2, 2:4, 8:11, 10:5}
352. Structure 22N76M16C
DLSs within combinatorial structure:
DLS 1: 012345678123468507387510264258607143601732485875124036734256810460871352546083721
DLS 2: 012345678738206415546083721823174056465821307201657843170468532654732180387510264
DLS 3: 012345678738206415546083721823164057475821306201657843160478532654732180387510264
DLS 4: 012345678758236410546083721820174536463821057231607845175468302604752183387510264
DLS 5: 012345678758236410546083721820164537473821056231607845165478302604752183387510264
...
DLS 18: 012345678423561807357810264284607513608732145175428036731256480860174352546083721
DLS 19: 012345678423861507387510264254607813608732145175428036731256480860174352546083721
DLS 20: 012345678423861507387510264204657813658732140175428036731206485860174352546083721
DLS 21: 012345678463871502387510264754206813208637145125468730631052487870124356546783021
DLS 22: 012345678163478502387510264758206143201637485825164730634052817470821356546783021
Adjacency matrix:
0111111111100000000000
1000000000011111111100
1000000000011111111100
1000000000011011101100
1000000000011011101100
1000000000000000100000
1000000000000000100000
1000000000011011101100
1000000000011011101100
1000000000011011101111
1000000000011011101111
0111100111100000000000
0111100111100000000000
0110000000000000000000
0111100111100000000000
0111100111100000000000
0111111111100000000000
0110000000000000000000
0111100111100000000000
0111100111100000000000
0000000001100000000000
0000000001100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123468507387510264258607143601732485875124036734256810460871352546083721
CF 2: 012345678120476835847051263785630142356814720201783456634208517463527081578162304
CF 3: 012345678120478536583604217764581023201863754835017462647132805358726140476250381
CF 4: 012345678120567834346851720234780156857014263681203547705638412563472081478126305
CF 5: 012345678120467835346851720235780146857014263681203457704638512463572081578126304
...
CF 12: 012345678120476835386014752567831204241758360475263081754680123803127546638502417
CF 13: 012345678120476835836014752567831204241758360475263081754680123308127546683502417
CF 14: 012345678120476835836014752567821304341758260475263081754680123208137546683502417
CF 15: 012345678120586347574238160481672053748051236256713804863420715307164582635807421
CF 16: 012345678120568347758406123547613082634752810483071265306284751875120436261837504
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{2:6, 8:10, 10:6}
353. Structure 22N76M22C
DLSs within combinatorial structure:
DLS 1: 012345678120768453584176320247850136753612084601283547836524701375401862468037215
DLS 2: 012345678831620547647283105183572064205864731564718320720156483458037216376401852
DLS 3: 012345678231680547647823105183572064805264731564718320720156483458037216376401852
DLS 4: 012345678180576423764152380647280135523718064801623547235864701376401852458037216
DLS 5: 012345678180756423564172380647280135723518064801623547235864701376401852458037216
...
DLS 18: 012345678847623105605284731581702463230861547763158024124576380458037216376410852
DLS 19: 012345678847623105605284731580712463231860547763158024124576380458037216376401852
DLS 20: 012345678841623507607284135180572463235860741563718024724156380458037216376401852
DLS 21: 012345678124758360583176024267803145706512483631284507845620731370461852458037216
DLS 22: 012345678124578360783156024267803145506712483631284507845620731370461852458037216
Adjacency matrix:
0110000000000000000000
1001111111110000000000
1001111111110000000000
0110000000001111111100
0110000000001111111100
0110000000001011101100
0110000000001011101100
0110000000001011101100
0110000000001011101100
0110000000000000000000
0110000000001011101100
0110000000001011101100
0001111110110000000000
0001100000000000000000
0001111110110000000011
0001111110110000000000
0001111110110000000000
0001100000000000000000
0001111110110000000011
0001111110110000000000
0000000000000010001000
0000000000000010001000
Different CFs set within combinatorial structure:
CF 1: 012345678120768453584176320247850136753612084601283547836524701375401862468037215
CF 2: 012345678120476853856014732473562081248731560367158204734680125501827346685203417
CF 3: 012345678120476853856014732473562081548731260367128504734680125201857346685203417
CF 4: 012345678120476835847051263731680452356814720285703146604238517463527081578162304
CF 5: 012345678120486357758260143674152830267031584835724016346508721501873462483617205
...
CF 18: 012345678120467853754680132683502417578136240341728506836014725207851364465273081
CF 19: 012345678120476853754680132683502417568137240341728506836014725207851364475263081
CF 20: 012345678120486735834670152568127340347851206675203481756014823201738564483562017
CF 21: 012345678120486357358620741634752810581237406875164032746508123207813564463071285
CF 22: 012345678120486357358620741634752810587231406875164032746508123201873564463017285
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{2:6, 8:10, 10:6}
354. Structure 22N80M11C
DLSs within combinatorial structure:
DLS 1: 012345678120476853854610732673502481541837206367128540736084125208751364485263017
DLS 2: 012345678547138206368721540485263017156074832830416725201857364724680153673502481
DLS 3: 012345678547138206368721540485263017856074132130486725201857364724610853673502481
DLS 4: 012345678567138240308721564485263017154670832836014725241857306720486153673502481
DLS 5: 012345678567138240308721564485263017854670132136084725241857306720416853673502481
...
DLS 18: 012345678120476853584610732673502481241837506367158240736084125805721364458263017
DLS 19: 012345678124670853586014732673502481201837564347158206730486125865721340458263017
DLS 20: 012345678124570863865014732573602481601837254347128506730486125258761340486253017
DLS 21: 012345678567138420308721564285463017154670832836012745421857306740286153673504281
DLS 22: 012345678567138420308721564285463017854670132136082745421857306740216853673504281
Adjacency matrix:
0111111110000000000000
1000000001111111000000
1000000001111111000000
1000000001111111111100
1000000001111111111100
1000000001111111000000
1000000001111111000000
1000000001111111000000
1000000001111111000000
0111111110000000000000
0111111110000000000011
0111111110000000000011
0111111110000000000000
0111111110000000000000
0111111110000000000000
0111111110000000000000
0001100000000000000000
0001100000000000000000
0001100000000000000011
0001100000000000000011
0000000000110000001100
0000000000110000001100
Different CFs set within combinatorial structure:
CF 1: 012345678120476853854610732673502481541837206367128540736084125208751364485263017
CF 2: 012345678120487536835071462647832150764518023351726804476250381208163745583604217
CF 3: 012345678120476835846051723235780146357814260681203457704638512463527081578162304
CF 4: 012345678120478563573604281251863740864517032348726105735081426607132854486250317
CF 5: 012345678120467835347851260785630142856014723201783456634208517463572081578126304
...
CF 7: 012345678120486735836074152568127304341758260475263081754610823207831546683502417
CF 8: 012345678120586347574238160486172053648057231257613804863420715301764582735801426
CF 9: 012345678120476853584610732673502481241837506367158240736084125805721364458263017
CF 10: 012345678120486735836072154568137402241758360475263081754610823307821546683504217
CF 11: 012345678120478563573604281251863740864217035348756102735081426607132854486520317
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 12, 12]
Multiset of vertices powers:
{2:2, 4:4, 8:12, 10:2, 12:2}
355. Structure 24N28M24C
DLSs within combinatorial structure:
DLS 1: 012345678120483567837261045574612803486057132653708421761524380245830716308176254
DLS 2: 012345678745830216263708451301526784658174320487261035120657843834012567576483102
DLS 3: 012345678128463507637280145574102863461857032853716420286074351740531286305628714
DLS 4: 012345678520483167837261045174652803486017532653708421265874310748130256301526784
DLS 5: 012345678120483567837261045574612803486057132653708421261874350748530216305126784
...
DLS 20: 012345678745138206263780451380521764651874320407216835826057143134602587578463012
DLS 21: 012345678745138206263780451308521764651874320487216035826057143134602587570463812
DLS 22: 012345678745830216563708421301256784628174350487561032150627843834012567276483105
DLS 23: 012345678745138206563780421308251764621874350487516032856027143134602587270463815
DLS 24: 012345678745138206563780421380251764621874350407516832856027143134602587278463015
Adjacency matrix:
010000000000000000000000
101111111111111111100000
010000000000000000000000
010000000000000000010000
010000000000000000011111
010000000000000000000000
010000000000000000000100
010000000000000000010000
010000000000000000011000
010000000000000000000000
010000000000000000000000
010000000000000000000000
010000000000000000000000
010000000000000000000000
010000000000000000000000
010000000000000000000000
010000000000000000000000
010000000000000000000000
010000000000000000000000
000110011000000000000000
000010001000000000000000
000010100000000000000000
000010000000000000000000
000010000000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120483567837261045574612803486057132653708421761524380245830716308176254
CF 2: 012345678123478560657014382548127036380651427834206715261730854705863241476582103
CF 3: 012345678123068754574816032738521460681230547356407821847652103460173285205784316
CF 4: 012345678120567843574638210805713426683152704458026137241870365367401582736284051
CF 5: 012345678120483567837261045574612803486057132653708421261874350748530216305126784
...
CF 20: 012345678120486357605874132568712043731260485847053261254137806473628510386501724
CF 21: 012345678123564807681270534570826143456738021364107285837051462748612350205483716
CF 22: 012345678123078564657410382548127036380651427834206715261734850705863241476582103
CF 23: 012345678120678345681504732837421560458063127365217084243750816704836251576182403
CF 24: 012345678120678345631504782387421560458063127865217034243750816704836251576182403
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 6, 18]
Multiset of vertices powers:
{1:15, 2:5, 3:1, 4:1, 6:1, 18:1}
356. Structure 24N32M2C
DLSs within combinatorial structure:
DLS 1: 012345678123568407541826730458703261687251043306174825874610352765032184230487516
DLS 2: 012345678785621034456738201320186745148073562867452310231507486603214857574860123
DLS 3: 012345678364278501275081436501427863730816245486503127843162750127650384658734012
DLS 4: 012345678563278401247081536401523867750816243386704125874162350125630784638457012
DLS 5: 012345678541876203827610534284531067756128340108763425673084152365402781430257816
...
DLS 20: 012345678163278405247810536438521067785136240306754821874062153521603784650487312
DLS 21: 012345678164823507875012436508471263280136745436507821347268150721650384653784012
DLS 22: 012345678346278105271480536104527863735861240680153427863012754527604381458736012
DLS 23: 012345678341826507865412730584701263237168045108573426673280154726054381450637812
DLS 24: 012345678124876503871620435508437261786251340450163827643018752367502184235784016
Adjacency matrix:
010000000000000000000000
101111100000000000000000
010000011111000000000000
010000001110110000000000
010000000000000000000000
010000001110001100000000
010000001110000011000000
001000000000000000000000
001101100000000000110000
001101100000000000001100
001101100000000000000011
001000000000000000000000
000100000000000000000000
000100000000000000000000
000001000000000000000000
000001000000000000000000
000000100000000000000000
000000100000000000000000
000000001000000000000000
000000001000000000000000
000000000100000000000000
000000000100000000000000
000000000010000000000000
000000000010000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123568407541826730458703261687251043306174825874610352765032184230487516
CF 2: 012345678123056847658712304867431250204568731381207465730124586475683012546870123
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 6, 6]
Multiset of vertices powers:
{1:16, 6:8}
357. Structure 24N34M24C
DLSs within combinatorial structure:
DLS 1: 012345678123506847654087213567820134701462385840173562435218706278631450386754021
DLS 2: 012345678437258106376821450840512763268170534781634025523706841654083217105467382
DLS 3: 012345678437258106376821450640512783268170534781634025523706841854063217105487362
DLS 4: 012345678437258106376821450804512763268170534781634025523706841650483217145067382
DLS 5: 012345678437258106376821450604512783268170534781634025523706841850463217145087362
...
DLS 20: 012345678437258106276831450604512387368170524781624035523706841850467213145083762
DLS 21: 012345678837254160278631054486512307340178526701426835523760481654087213165803742
DLS 22: 012345678168502347854067213537280164701436825240178536485613702376821450623754081
DLS 23: 012345678158602347864057213637280154701436825240178536486513702375821460523764081
DLS 24: 012345678140536827653287014567824103721063485834172560205418736478601352386750241
Adjacency matrix:
011111111111111111111000
100000000000000000000000
100000000000000000000100
100000000000000000000000
100000000000000000000000
100000000000000000000110
100000000000000000000000
100000000000000000000000
100000000000000000000000
100000000000000000000000
100000000000000000000000
100000000000000000000001
100000000000000000000101
100000000000000000000001
100000000000000000000001
100000000000000000000110
100000000000000000000001
100000000000000000000001
100000000000000000000001
100000000000000000000001
100000000000000000000000
001001000000100100000000
000001000000000100000000
000000000001111011110000
Different CFs set within combinatorial structure:
CF 1: 012345678123506847654087213567820134701462385840173562435218706278631450386754021
CF 2: 012345678120567834784651023635824701263718540347206185856470312471083256508132467
CF 3: 012345678120567834473618250806724315684152703258036147531870426367401582745283061
CF 4: 012345678120467835784651023635824701263718540357206184846570312471083256508132467
CF 5: 012345678120567834473618250836724015684152703258036147501873426367401582745280361
...
CF 20: 012345678120476835483627150675182403831750264568014327256803741347561082704238516
CF 21: 012345678120476835356814027243761580874052361501238746637180452768503214485627103
CF 22: 012345678123506847435678102801423756357860214684217530760184325276051483548732061
CF 23: 012345678123480567748062135806534721685173042537216480470821356254607813361758204
CF 24: 012345678120678534354087216538704162461850723247136805876421350605213487783562041
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 8, 20]
Multiset of vertices powers:
{1:9, 2:9, 3:3, 4:1, 8:1, 20:1}
358. Structure 24N36M8C
DLSs within combinatorial structure:
DLS 1: 012345678120687435853712064786534120348260517604178253435021786571806342267453801
DLS 2: 012345678354108267468271530627453801173826045536017482801762354245680713780534126
DLS 3: 012345678354108267428671530267453801173826045536017482801762354645280713780534126
DLS 4: 012345678354102867428671530867453201173826045536017482201768354645280713780534126
DLS 5: 012345678126087435853712064780534126348260517604178253435621780571806342267453801
...
DLS 20: 012345678354108267428671530267413805573826041136057482801762354645280713780534126
DLS 21: 012345678354102867428671530867413205573826041136057482201768354645280713780534126
DLS 22: 012345678453108267368271540627413805574826031136057482801762354245680713780534126
DLS 23: 012345678453108267328671540267413805574826031136057482801762354645280713780534126
DLS 24: 012345678453102867328671540867413205574826031136057482201768354645280713780534126
Adjacency matrix:
011100000000000000000000
100011000000000000000000
100011111111111000000000
100011000000000000000000
011100000000000111111111
011100000000000000000000
001000000000000010010010
001000000000000000000000
001000000000000000000000
001000000000000010010010
001000000000000010010010
001000000000000000000000
001000000000000000000000
001000000000000000000000
001000000000000000000000
000010000000000000000000
000010100110000000000000
000010000000000000000000
000010000000000000000000
000010100110000000000000
000010000000000000000000
000010000000000000000000
000010100110000000000000
000010000000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120687435853712064786534120348260517604178253435021786571806342267453801
CF 2: 012345678124657803605178432740821356576430281431586720857203164368712045283064517
CF 3: 012345678123486750451760283506824137345678012267153804780531426834207561678012345
CF 4: 012345678120687435853712064386574120748260513604138257435021786571806342267453801
CF 5: 012345678124658703605187432740821356576430281431576820857203164368712045283064517
CF 6: 012345678123486750451768203506824137345670812267153084780531426834207561678012345
CF 7: 012345678120678543748013265257431086684250731435786120876102354503867412361524807
CF 8: 012345678120678543748013265257481036634250781485736120876102354503867412361524807
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 12, 12]
Multiset of vertices powers:
{1:12, 3:4, 4:6, 12:2}
359. Structure 24N36M12C
DLSs within combinatorial structure:
DLS 1: 012345678123658740786034521231706854658417032540283167867520413405172386374861205
DLS 2: 012345678278516034341867250827630145483251706605174382534702861160483527756028413
DLS 3: 012345678278516034341867250823670145487251306605134782534702861160483527756028413
DLS 4: 012345678278516034341867250827630541483251706605174382134702865560483127756028413
DLS 5: 012345678278516034341867250823670541487251306605134782134702865560483127756028413
...
DLS 20: 012345678123658740786024531235706814658417023540283167867130452401572386374861205
DLS 21: 012345678275816034341567280827630541483251706608174352134702865560483127756028413
DLS 22: 012345678275816034341567280823670541487251306608134752134702865560483127756028413
DLS 23: 012345678275816034341507286827630541483251760608174352134762805560483127756028413
DLS 24: 012345678275816034341507286823670541487251360608134752134762805560483127756028413
Adjacency matrix:
011111111000000000000000
100000000100000000000000
100000000000000000000000
100000000111111100000000
100000000011001000000000
100000000000000010000000
100000000000000000000000
100000000011001011110000
100000000011001000000000
010100000000000000000000
000110011000000000000000
000110011000000000000000
000100000000000000000000
000100000000000000000000
000110011000000000001111
000100000000000000001000
000001010000000000000000
000000010000000000000000
000000010000000000000000
000000010000000000000010
000000000000001100000000
000000000000001000000000
000000000000001000010000
000000000000001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123658740786034521231706854658417032540283167867520413405172386374861205
CF 2: 012345678123486705486720153678512340365174082847603521254031867730258416501867234
CF 3: 012345678123486705486730152678512340265174083847603521354021867730258416501867234
CF 4: 012345678123658740786034521231786054650417832548203167867520413405172386374861205
CF 5: 012345678123486705486720153678512340360174582847653021254031867735208416501867234
...
CF 8: 012345678120438756481567230275610843643872015756183402834021567567204381308756124
CF 9: 012345678123658740786034521235706814658417032540283167867120453401572386374861205
CF 10: 012345678120437856471568230285610743643872015756183402834021567567204381308756124
CF 11: 012345678123658740786034521235786014650417832548203167867120453401572386374861205
CF 12: 012345678123407856471568230285610743640872315756183402834021567567234081308756124
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8]
Multiset of vertices powers:
{1:8, 2:8, 4:4, 8:4}
360. Structure 24N41M12C
DLSs within combinatorial structure:
DLS 1: 012345678120478536367152084536827401874061253683514720451280367745603812208736145
DLS 2: 012345678253014867408637125784160253536728410861473502125806734670582341347251086
DLS 3: 012345678253016847608437125784160253536728410841673502125804736470582361367251084
DLS 4: 012345678253014867408637125784160253536728401860473512125806734671582340347251086
DLS 5: 012345678253016847608437125784160253536728401840673512125804736471582360367251084
...
DLS 20: 012345678253016847638407152784160523506728431840673215125834706471582360367251084
DLS 21: 012345678253014867408637152784160523536728401860473215125806734671582340347251086
DLS 22: 012345678253016847608437152784160523536728401840673215125804736471582360367251084
DLS 23: 012345678253014867438607125784160253506728431860473512125836704671582340347251086
DLS 24: 012345678253016847638407125784160253506728431840673512125834706471582360367251084
Adjacency matrix:
011110000000000000000000
100001110000000000000000
100001110000000000000000
100001111111111100000000
100001111000100000000000
011110000000000011111111
011110000000000000000011
011110000000000000000000
000110000000000000000011
000100000000000000000000
000100000000000000001000
000100000000000000000000
000110000000000000000011
000100000000000000000000
000100000000000000000000
000100000000000000000000
000001000000000000000000
000001000000000000000000
000001000000000000000000
000001000000000000000000
000001000010000000000000
000001000000000000000000
000001101000100000000000
000001101000100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536367152084536827401874061253683514720451280367745603812208736145
CF 2: 012345678120568743247086135451872360764230581635701824876153402308614257583427016
CF 3: 012345678120478536367152084536827401784061253673514820451280367845603712208736145
CF 4: 012345678120568743246087135451872360674230581735601824867153402308714256583426017
CF 5: 012345678120478536367182054536827401754061283673514820481250367845603712208736145
...
CF 8: 012345678120478536637152084563827401874061253386514720451280367745603812208736145
CF 9: 012345678120438756431587260275610843643872015856123407784061532567204381308756124
CF 10: 012345678123486750784152036507864123648037215450671382361728504875203461236510847
CF 11: 012345678120568743846037152731802564674250381453671820267183405508714236385426017
CF 12: 012345678120586743846037152731802564674250381453671820287163405508714236365428017
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 12, 12]
Multiset of vertices powers:
{1:10, 2:2, 4:8, 6:2, 12:2}
361. Structure 24N42M24C
DLSs within combinatorial structure:
DLS 1: 012345678230751846348607521457186302506274183681032754763528410825413067174860235
DLS 2: 012345678657182304281034756723451860145863027368207541874610235430576182506728413
DLS 3: 012345678657812304281034756723451860845163027368207541174680235430576182506728413
DLS 4: 012345678236751840348607521457186302560274183681032754703528416825413067174860235
DLS 5: 012345678230751846348607521457186032506274183681032754763528410825410367174863205
...
DLS 20: 012345678536728140348607521457186032260574813681032754703251486825410367174863205
DLS 21: 012345678560721843843607521457816302208574136186032754731258460625483017374160285
DLS 22: 012345678560721843843607521457816302208574136136082754781253460625438017374160285
DLS 23: 012345678260751843843607125457816302108274536536082714785123460621438057374560281
DLS 24: 012345678260751843843607125457816302108274536586032714735128460621483057374560281
Adjacency matrix:
011000000000000000000000
100111111111111111111100
100111111111111111111111
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
001000000000000000000000
001000000000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678230751846348607521457186302506274183681032754763528410825413067174860235
CF 2: 012345678123458067458706321801634752287510436634287105760123584375861240546072813
CF 3: 012345678123458067458760321801634752287516430634287105760123584375801246546072813
CF 4: 012345678231587046587604132428150367706428513345716820863072451150263784674831205
CF 5: 012345678230681745761058234143807562578463021654172380825730416407216853386524107
...
CF 20: 012345678123487506476528130584172063208736451350614827865203714647051382731860245
CF 21: 012345678143857260758026134527604813680132457834761502365280741401578326276413085
CF 22: 012345678123857460758026134547602813680134257834761502365480721201578346476213085
CF 23: 012345678123857460758026134547602813860134257634781502385410726206578341471263085
CF 24: 012345678124573860436708215260831457781052346653417082547286103805624731378160524
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 20, 22]
Multiset of vertices powers:
{1:2, 2:20, 20:1, 22:1}
362. Structure 24N44M20C
DLSs within combinatorial structure:
DLS 1: 012345678120678345387064521465810237654237810738156402546702183873421056201583764
DLS 2: 012345678387516024546128307170264583863470152425083761201857436754632810638701245
DLS 3: 012345678487516023536128407170263584863470152325084761201857346754632810648701235
DLS 4: 012345678387512064546178302120764583873420156465083721201856437654237810738601245
DLS 5: 012345678487512063536178402120763584873420156365084721201856347654237810748601235
...
DLS 20: 012345678120683745783064521465810237654278310378156402546702183837421056201537864
DLS 21: 012345678120683745873064521465810237654278310387156402546702183738421056201537864
DLS 22: 012345678120687345387064521465810237654238710738156402546702183873421056201573864
DLS 23: 012345678120678345837064521465810237654237810783156402546702183378421056201583764
DLS 24: 012345678120687345837064521465810237654238710783156402546702183378421056201573864
Adjacency matrix:
011111111000000000000000
100000000000000000000000
100000000000000000000000
100000000111111111111111
100000000000011000000100
100000000000000000000000
100000000000000000000000
100000000111111111111111
100000000000011000000100
000100010000000000000000
000100010000000000000000
000100010000000000000000
000100010000000000000000
000110011000000000000000
000110011000000000000000
000100010000000000000000
000100010000000000000000
000100010000000000000000
000100010000000000000000
000100010000000000000000
000100010000000000000000
000110011000000000000000
000100010000000000000000
000100010000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120678345387064521465810237654237810738156402546702183873421056201583764
CF 2: 012345678123408756605714382576182430348671025834056217751263804260837541487520163
CF 3: 012345678123408756605714382576182430348271065834056217751623804260837541487560123
CF 4: 012345678123478506657014382576182430348651027834706215701263854265830741480527163
CF 5: 012345678123478506657014382576182430348251067834706215701623854265830741480567123
...
CF 16: 012345678120487356564238710387512064738064521645173802873620145201756483456801237
CF 17: 012345678120487356654238710387512064738064521546173802873620145201756483465801237
CF 18: 012345678120586743785460321578631402634872510463018257346207185857124036201753864
CF 19: 012345678120586743875460321587631402634872510463018257346207185758124036201753864
CF 20: 012345678120687345387064521465810237654238710738156402546702183873421056201573864
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 8, 16, 16]
Multiset of vertices powers:
{1:4, 2:12, 4:5, 8:1, 16:2}
363. Structure 24N47M24C
DLSs within combinatorial structure:
DLS 1: 012345678120678543354786012407861325261534807835207461786452130678013254543120786
DLS 2: 012345678534012867678201345153720486786453120420186753867534201345678012201867534
DLS 3: 012345678120678543354786012467801325201534867835267401786452130678013254543120786
DLS 4: 012345678123678540354786012407861235261534807835207461786450123678012354540123786
DLS 5: 012345678123678540354786012467801235201534867835267401786450123678012354540123786
...
DLS 20: 012345678843012567678201435154780326726453180380126754567834201435678012201567843
DLS 21: 012345678843012567678201435154720386786453120320186754567834201435678012201567843
DLS 22: 012345678734012865658201347173580426526473180480126753865734201347658012201867534
DLS 23: 012345678743012865658201437174580326526473180380126754865734201437658012201867543
DLS 24: 012345678743012865658201437174520386586473120320186754865734201437658012201867543
Adjacency matrix:
010000000000000000000000
101111111111100000000000
010000000000000000000000
010000000000010000000000
010000000000010000000000
010000000000011100000000
010000000000011100000000
010000000000000010000000
010000000000000011000000
010000000000010010100000
010000000000010010100000
010000000000011110111000
010000000000011111111111
000111100111100000000000
000001100001100000000000
000001100001100000000000
000000011111100000000000
000000001000100000000000
000000000111100000000000
000000000001100000000000
000000000001100000000000
000000000000100000000000
000000000000100000000000
000000000000100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120678543354786012407861325261534807835207461786452130678013254543120786
CF 2: 012345678120478536574863201786120453837654012208736145641587320365201784453012867
CF 3: 012345678120478536354687210786120453647853021208736145871564302563201784435012867
CF 4: 012345678120586743658734201506421837243678015781053462435867120867210354374102586
CF 5: 012345678120458736534687210786120453645873021208536147851764302367201584473012865
...
CF 20: 012345678120586743658734201283451067501678432746023815435867120867210354374102586
CF 21: 012345678120478536574683201786120453637854012258736140841067325365201784403512867
CF 22: 012345678120478536847563012508614327734850261456231780361702854273086145685127403
CF 23: 012345678120687345648753201476520813301876452285134067753468120867012534534201786
CF 24: 012345678120678345571063284457831026764250831236784510843106752308512467685427103
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 6, 8, 8, 12, 12]
Multiset of vertices powers:
{1:5, 2:6, 3:1, 4:7, 6:1, 8:2, 12:2}
364. Structure 24N48M24C
DLSs within combinatorial structure:
DLS 1: 012345678123758064784160253468513720340271586875406312651032847207684135536827401
DLS 2: 012345678657482130536827401305276814278014365461538027140653782823701546784160253
DLS 3: 012345678657482130236857401305276814578014362461538027140623785823701546784160253
DLS 4: 012345678123708564784130256268513740645271083870456312351064827407682135536827401
DLS 5: 012345678823701564784130256268513740645278013170456382351064827407682135536827401
...
DLS 20: 012345678823751064784160253468513720340278516175406382651032847207684135536827401
DLS 21: 012345678843701562721468053460853721305172846578216304684530217257684130136027485
DLS 22: 012345678843710562721468053460853721305172846578206314684531207257684130136027485
DLS 23: 012345678457682130536827401305276814278014365641538027160453782823701546784160253
DLS 24: 012345678457682130236857401305276814578014362641538027160423785823701546784160253
Adjacency matrix:
011000000000000000000000
100111111111111111111100
100111111111111111111100
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000011
011000000000000000000011
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000000
011000000000000000000011
011000000000000000000011
000000000001100000001100
000000000001100000001100
Different CFs set within combinatorial structure:
CF 1: 012345678123758064784160253468513720340271586875406312651032847207684135536827401
CF 2: 012345678123704865308167524865421307540873216481056732754632180637280451276518043
CF 3: 012345678123486750658723104781564032540872316467031285306158427834207561275610843
CF 4: 012345678123486750365120487407861325548073216751634802680752134834207561276518043
CF 5: 012345678123486750365120487407861235548072316751634802680753124834207561276518043
...
CF 20: 012345678120487365386751024863124507548073216407568132751236480634802751275610843
CF 21: 012345678120486753804561237275830164538672041756123480643718502367204815481057326
CF 22: 012345678123607845567814320386451207835760412601283754470128536254076183748532061
CF 23: 012345678123704865308167524856421307540873216481056732764532180637280451275618043
CF 24: 012345678123486750658723104701564832540872316467031285386150427834207561275618043
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 20, 20]
Multiset of vertices powers:
{2:16, 4:6, 20:2}
365. Structure 24N54M4C
DLSs within combinatorial structure:
DLS 1: 012345678124538706568170342706421835370264581451783260835607124647812053283056417
DLS 2: 012345678281053467645817023350764281703426815826501734467182350538670142174238506
DLS 3: 012345678281073465645817023350764281503426817826501734467182350738650142174238506
DLS 4: 012345678280153467645817023351764280703426815826501734467082351538670142174238506
DLS 5: 012345678280173465645817023351764280503426817826501734467082351738650142174238506
...
DLS 20: 012345678841253067387012456235607184658730241764128305170864523423586710506471832
DLS 21: 012345678241853067387012456835607124658730241764128305170264583423586710506471832
DLS 22: 012345678538607124476281530685730241324518706107462853853076412260154387741823065
DLS 23: 012345678835607124476281530658730241324518706107462853583076412260154387741823065
DLS 24: 012345678538607124476281530385760241624518703107432856853076412260154387741823065
Adjacency matrix:
011111100000000000000000
100000011111000000000000
100000000111000000000000
100000000111000000000000
100000000111000000000000
100000101000111000000000
100001010000000111000000
010000101000000000111000
010001010000000000000111
011110000000000000000000
011110000000000000000000
011110000000000000000000
000001000000000000000111
000001000000000000000111
000001000000000000000111
000000100000000000111000
000000100000000000111000
000000100000000000111000
000000010000000111000000
000000010000000111000000
000000010000000111000000
000000001000111000000000
000000001000111000000000
000000001000111000000000
Different CFs set within combinatorial structure:
CF 1: 012345678124538706568170342706421835370264581451783260835607124647812053283056417
CF 2: 012345678123758046275684310607412835534867201368071524841503762450236187786120453
CF 3: 012345678124537806568170342806421735370264581451783260735608124647812053283056417
CF 4: 012345678123750846275684310687412035534867201368071524841503762450236187706128453
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6]
Multiset of vertices powers:
{4:18, 6:6}
366. Structure 24N60M4C
DLSs within combinatorial structure:
DLS 1: 012345678231507864108763425864231507345678012687054231753426180426180753570812346
DLS 2: 012345678420183756354621087183756420678012345765438102807264531531807264246570813
DLS 3: 012345678420183756364521087183756420678012345756438102807264531531807264245670813
DLS 4: 012345678720183456357621084183456720678012345465738102804267531531804267246570813
DLS 5: 012345678720183456367521084183456720678012345456738102804267531531804267245670813
...
DLS 20: 012345678783456120476210583261507834507834261834162705120783456345678012658021347
DLS 21: 012345678783456120876210543261507834507834261438162705120783456345678012654021387
DLS 22: 012345678678012345805134762726480153234561807480273516561807234153726480347658021
DLS 23: 012345678678012345405138762726480153234561807840273516561807234153726480387654021
DLS 24: 012345678678012345835104762726480153204561837480273516561837204153726480347658021
Adjacency matrix:
011110000000000000000000
100001111111000000000000
100000001110000000000000
100000001110000000000000
100000001110000000000000
010000110011111000000000
010001010011000111000000
010001100011000000111000
011110000000000000000000
011110000000000000000000
011111110001000000000000
010001110010000000000111
000001000000000000000111
000001000000000000000111
000001000000000000000111
000000100000000000111000
000000100000000000111000
000000100000000000111000
000000010000000111000000
000000010000000111000000
000000010000000111000000
000000000001111000000000
000000000001111000000000
000000000001111000000000
Different CFs set within combinatorial structure:
CF 1: 012345678231507864108763425864231507345678012687054231753426180426180753570812346
CF 2: 012345678230678145564120387856701234781453062473286510147062853305817426628534701
CF 3: 012345678230678145786451032105837426624510783378264501453786210867102354541023867
CF 4: 012345678231478506457180263506831724783064152164752380825607431648523017370216845
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{4:18, 8:6}
367. Structure 24N64M8C
DLSs within combinatorial structure:
DLS 1: 012345678123756840245683701867412035754061283430578126571804362608237514386120457
DLS 2: 012345678251408736783516024605781342876123450128634507467250813340872165534067281
DLS 3: 012345678251608734783514026405781362876123450128436507647250813360872145534067281
DLS 4: 012345678251408736783156024605781342876523410128634507467210853340872165534067281
DLS 5: 012345678251608734783154026405781362876523410128436507647210853360872145534067281
...
DLS 20: 012345678521408736783126054605781342876253410158634207467510823340872165234067581
DLS 21: 012345678251608734783524016405782361876213450128436507647150823360871245534067182
DLS 22: 012345678251608734783254016405782361876513420128436507647120853360871245534067182
DLS 23: 012345678521608734783214056405781362876153420158436207647520813360872145234067581
DLS 24: 012345678521608734783124056405781362876253410158436207647510823360872145234067581
Adjacency matrix:
011110000000000000000000
100001110000000000000000
100001111111111100000000
100001110000000000000000
100001111111111100000000
011110000000000011111111
011110000000000000000000
011110000000000011111111
001010000000000000000000
001010000000000000000000
001010000000000000000000
001010000000000000000000
001010000000000000001111
001010000000000000001111
001010000000000000001111
001010000000000000001111
000001010000000000000000
000001010000000000000000
000001010000000000000000
000001010000000000000000
000001010000111100000000
000001010000111100000000
000001010000111100000000
000001010000111100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123756840245683701867412035754061283430578126571804362608237514386120457
CF 2: 012345678123756840245603781867412035754861203430578126571084362608237514386120457
CF 3: 012345678123867405386024157678512340260471583847653021754130862435208716501786234
CF 4: 012345678123854706341276580476581032507468321860723154754102863638017245285630417
CF 5: 012345678123750846245683701867412035754061283436578120571804362608237514380126457
CF 6: 012345678123568740854620137237106485681732504405287361760451823376814052548073216
CF 7: 012345678123856704361274580476581032507468321840723156754102863638017245285630417
CF 8: 012345678123568740854620137237186405601732584485207361760451823376814052548073216
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12]
Multiset of vertices powers:
{2:8, 4:4, 6:8, 12:4}
368. Structure 24N64M12C
DLSs within combinatorial structure:
DLS 1: 012345678123487560386751024650124387548073216407568132761832405834206751275610843
DLS 2: 012345678837602154154026783781250436376518042268437501503164827425781360640873215
DLS 3: 012345678837602154154036782781250436276518043368427501503164827425781360640873215
DLS 4: 012345678834602157157026483481250736376518042268734501503167824725481360640873215
DLS 5: 012345678834602157157036482481250736276518043368724501503167824725481360640873215
...
DLS 20: 012345678684053127137680452451236780276518043325704861863127504708461235540872316
DLS 21: 012345678837602154154836702781250436276518043360427581503164827425781360648073215
DLS 22: 012345678834602157157836402481250736276518043360724581503167824725481360648073215
DLS 23: 012345678168437502825701364603154827540873216437682150781260435354026781276518043
DLS 24: 012345678468137502825704361603451827540873216137682450784260135351026784276518043
Adjacency matrix:
011110000000000000000000
100001111100000000000000
100001111111110000000000
100001111100000000000000
100001111111110000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
001010000000001111111100
001010000000000000001100
001010000000001111111100
001010000000000000001100
000000000010100000000011
000000000010100000000011
000000000010100000000011
000000000010100000000011
000000000010100000000011
000000000010100000000011
000000000011110000000000
000000000011110000000000
000000000000001111110000
000000000000001111110000
Different CFs set within combinatorial structure:
CF 1: 012345678123487560386751024650124387548073216407568132761832405834206751275610843
CF 2: 012345678120568743761853204245687130674230581857104362436071825308712456583426017
CF 3: 012345678123754806784036152451682730246578013308421567865107324537260481670813245
CF 4: 012345678123487560568721304431650782340578216605134827784062153857206431276813045
CF 5: 012345678123487560568721304431650782640578213305164827784032156857206431276813045
...
CF 8: 012345678123856704306128457570482163247630581684517032451703826865274310738061245
CF 9: 012345678120687435734156280863524107546873012385061724401732856257408361678210543
CF 10: 012345678123876504306128457570482163245630781684517032451703826867254310738061245
CF 11: 012345678123764805784036152461582730245678013308421567856107324637250481570813246
CF 12: 012345678123487560568721304431650782640578213385164027704832156857206431276013845
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 10, 10, 10, 10]
Multiset of vertices powers:
{4:16, 6:4, 10:4}
369. Structure 24N64M24C
DLSs within combinatorial structure:
DLS 1: 012345678124087536785631420861452703546870312408163257370216845253708164637524081
DLS 2: 012345678735621804401873265526704381380162547647538120253087416874216053168450732
DLS 3: 012345678735621804401853267526704381380162745647538120253087416874216053168470532
DLS 4: 012345678437621805501783264726804351350162487684537120243078516875216043168450732
DLS 5: 012345678437621805801753264726804351350162487684537120243078516578216043165480732
...
DLS 20: 012345678123807546785634120861453702536078214308261457470126835254780361647512083
DLS 21: 012345678123807546786534120851463702635078214308251467470126835264780351547612083
DLS 22: 012345678124807536786531420851462703645078312408153267370216845263780154537624081
DLS 23: 012345678624087531786534120865412703541870362108653247370261854253708416437126085
DLS 24: 012345678624807531786534120865412703541078362108653247370261854253780416437126085
Adjacency matrix:
011111111111100000000000
100000000000011100000000
100000000000011100000000
100000000000001011111100
100000000000001000100100
100000000000001000100111
100000000000001000100111
100000000000011100000000
100000000000011100000000
100000000000001011111100
100000000000001000100100
100000000000001000100111
100000000000001000100111
011000011000000000000000
011111111111100000000000
011000011000000000000000
000100000100000000000000
000100000100000000000000
000111100111100000000000
000100000100000000000000
000100000100000000000000
000111100111100000000000
000001100001100000000000
000001100001100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678124087536785631420861452703546870312408163257370216845253708164637524081
CF 2: 012345678123708546748651302607482135384560217465173820250814763871236054536027481
CF 3: 012345678123780546748651302687402135304568217465173820250814763871236054536027481
CF 4: 012345678120486753843761205275830164538672041786154320604218537467503812351027486
CF 5: 012345678120486753834761205275830164548672031786153420603218547367504812451027386
...
CF 20: 012345678123678045451786230645837102274560813307124586780251364836402751568013427
CF 21: 012345678123678540401786235645837102274560813357124086780251364836402751568013427
CF 22: 012345678124587360567138042403862157246751803680473521371620485835206714758014236
CF 23: 012345678123756840608234517584603721340178256475081362751862403867520134236417085
CF 24: 012345678123756840308264517584603721640178253475081362751832406867520134236417085
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 12, 12]
Multiset of vertices powers:
{2:4, 4:10, 6:4, 8:4, 12:2}
370. Structure 24N68M12C
DLSs within combinatorial structure:
DLS 1: 012345678123487560701853426457630182648072315580164237365721804834206751276518043
DLS 2: 012345678867503124635124087208467351573210846721638405184052763456781230340876512
DLS 3: 012345678867503124635124087280467351573210846721638405104852763456781230348076512
DLS 4: 012345678864503127635127084208764351573210846421638705187052463756481230340876512
DLS 5: 012345678864503127635127084280764351573210846421638705107852463756481230348076512
...
DLS 20: 012345678584062137823107564356724801275618043431286750167530482708451326640873215
DLS 21: 012345678587062134823104567356427081275610843731286450164538702408751326640873215
DLS 22: 012345678587062134823104567365427081276510843731286450154638702408751326640873215
DLS 23: 012345678584062137823107564356724081275610843431286750167538402708451326640873215
DLS 24: 012345678584062137823107564365724081276510843431286750157638402708451326640873215
Adjacency matrix:
011110000000000000000000
100001111111000000000000
100001111111000000000000
100001111111000000000000
100001111111000000000000
011110000000110000000000
011110000000000000000000
011110000000000000000000
011110000000110000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
000001001000001111000000
000001001000001111000000
000000000000110000111111
000000000000110000111111
000000000000110000111111
000000000000110000111111
000000000000001111000000
000000000000001111000000
000000000000001111000000
000000000000001111000000
000000000000001111000000
000000000000001111000000
Different CFs set within combinatorial structure:
CF 1: 012345678123487560701853426457630182648072315580164237365721804834206751276518043
CF 2: 012345678128403756305162487467831520643278015781654302850726134534087261276510843
CF 3: 012345678128403765306152487467831520543278016781564302850726134634087251275610843
CF 4: 012345678124567803763128450587601324340876512851234067405782136236450781678013245
CF 5: 012345678124567803763128450587601234340876512851234067405783126236450781678012345
...
CF 8: 012345678123487560701852436457630182648073215580164327365721804834206751276518043
CF 9: 012345678120486753786153420834561207348672015675018342453720186567204831201837564
CF 10: 012345678120483756783156420864531207348672015675018342456720183537204861201867534
CF 11: 012345678120483756804561237753126480348672015675018342261837504537204861486750123
CF 12: 012345678123587046357408261245673180864152307486031725701264853570816432638720514
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8]
Multiset of vertices powers:
{4:12, 6:4, 8:8}
371. Structure 24N72M12C
DLSs within combinatorial structure:
DLS 1: 012345678120463857684201735468750321501637482753128064376812540845076213237584106
DLS 2: 012345678581607432463758021237584106720163854604231785845076213376812540158420367
DLS 3: 012345678581607432463728051237584106750163824604231785845076213376812540128450367
DLS 4: 012345678587604132763158024234581706120463857601237485845076213376812540458720361
DLS 5: 012345678587604132763128054234581706150463827601237485845076213376812540428750361
...
DLS 20: 012345678160453827284501736458720361621037485703168254376812540845276013537684102
DLS 21: 012345678581607432463758021327584106730162854604231785845076213276813540158420367
DLS 22: 012345678587604132763158024324581706130462857601237485845076213276813540458720361
DLS 23: 012345678537684102268170354704531286153468027681702435845026713326817540470253861
DLS 24: 012345678587604132263178054734581206150463827601732485845026713326817540478250361
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111111000000
100000000111111100000000
100000000111111100110000
011111111000000000000000
011111111000000000000000
011111111000000000001100
011111111000000000000000
011111111000000000000000
011111111000000000000011
011111111000000000000000
000000100000000000000000
000000100000000000000000
000000001000000000000000
000000001000000000000000
000000000001000000000000
000000000001000000000000
000000000000001000000000
000000000000001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120463857684201735468750321501637482753128064376812540845076213237584106
CF 2: 012345678120487563506821734854760312348156027785203146271638450637014285463572801
CF 3: 012345678120487563506831724854760312248156037785203146371628450637014285463572801
CF 4: 012345678120483567574168230653874102368257041287016354401532786836720415745601823
CF 5: 012345678120487563278156430463572801546831027637014285301628754854760312785203146
...
CF 8: 012345678120487563764152380573861024358270416481036752835624107647508231206713845
CF 9: 012345678120487563764152380573861204358270416481036752835604127647528031206713845
CF 10: 012345678123068547546283701654872130701456823238107465470521386865734012387610254
CF 11: 012345678120483567584167230653874102367258041278016354401532786836720415745601823
CF 12: 012345678120487536503821764854760312648153027785206143271638450367014285436572801
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{1:8, 8:12, 10:4}
372. Structure 24N72M22C
DLSs within combinatorial structure:
DLS 1: 012345678123487065856723104701864532548072316467531280380156427634208751275610843
DLS 2: 012345678831206457104857326265730184376518042580462731457621803723184560648073215
DLS 3: 012345678831206457104857326365720184276518043580462731457631802723184560648073215
DLS 4: 012345678831206457104857326256730184375618042580462731467521803723184560648073215
DLS 5: 012345678831206457104857326356720184275618043580462731467531802723184560648073215
...
DLS 20: 012345678423187065856723401704861532548072316167534280380456127631208754275610843
DLS 21: 012345678423180567568723401784651032640872315157034286375468120831206754206517843
DLS 22: 012345678423187560568723401874651032640872315157034286305468127731206854286510743
DLS 23: 012345678123480567568723104781654032640872315457031286375168420834206751206517843
DLS 24: 012345678123487560568723104871654032640872315457031286305168427734206851286510743
Adjacency matrix:
011111111111111110000000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001111111
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001111111
100000000000000001110000
011111111111111110000000
011111111111111110000000
011111111111111110000000
000000010000000100000000
000000010000000100000000
000000010000000100000000
000000010000000100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123487065856723104701864532548072316467531280380156427634208751275610843
CF 2: 012345678120687453678012345863450127534876201457123860786201534345768012201534786
CF 3: 012345678120687453678012345863450127504876231457123860786231504345768012231504786
CF 4: 012345678120687453678012345863450127531876204457123860786204531345768012204531786
CF 5: 012345678120687453678012345863450127501876234457123860786234501345768012234501786
...
CF 18: 012345678123487560568723104781654032640872315457031286305168427834206751276510843
CF 19: 012345678123704865308167524765421380540873216481056732854632107637280451276518043
CF 20: 012345678123758046237486150460813527374560281651274803845107362508632714786021435
CF 21: 012345678120483567463127085805764321276510843651238704387652410734806152548071236
CF 22: 012345678120576843835107264246783510308612457681054732457860321764231085573428106
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 16, 16, 16, 16]
Multiset of vertices powers:
{2:4, 4:14, 8:2, 16:4}
373. Structure 24N72M24C
DLSs within combinatorial structure:
DLS 1: 012345678120687435768210543356402781543768012874153206687534120201876354435021867
DLS 2: 012345678374021856543867012127584360768210543480736125856473201635102487201658734
DLS 3: 012345678678021354534687012127534860786210543340768125453876201865102437201453786
DLS 4: 012345678374201856543867012127584360768012543480736125856473201635120487201658734
DLS 5: 012345678678201354534687012127534860786012543340768125453876201865120437201453786
...
DLS 20: 012345678430678125768210543256103784543867012871452306687521430304786251125034867
DLS 21: 012345678354687102768120534406253781235768410873401256687014325521876043140532867
DLS 22: 012345678354687102768120534206453781435768210873201456687012345541876023120534867
DLS 23: 012345678354678102768120534406253781235867410873401256687014325521786043140532867
DLS 24: 012345678354678102768120534206453781435867210873201456687012345541786023120534867
Adjacency matrix:
011110000000000000000000
100001111111111111110000
100001111111111111111111
100001111111111111110000
100001111111111111111111
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
011110000000000000000000
001010000000000000000000
001010000000000000000000
001010000000000000000000
001010000000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120687435768210543356402781543768012874153206687534120201876354435021867
CF 2: 012345678120487365234156087765824103546073812483261750601738524857602431378510246
CF 3: 012345678120487365634158207763524180546873012485061723201736854857602431378210546
CF 4: 012345678123457806401286735657812043574063281238174560865701324740638152386520417
CF 5: 012345678120578346247836015873602154301457862465183720586721403634210587758064231
...
CF 20: 012345678120476853475681230631857042247063185583124706764508321806732514358210467
CF 21: 012345678120468735865273041401732856658014327273586104536827410347601582784150263
CF 22: 012345678120458736734860215608734152473512860251086347847603521365271084586127403
CF 23: 012345678120468735865273041401782356653014827278536104536827410347601582784150263
CF 24: 012345678120458736734860215603784152478512360251036847847603521365271084586127403
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 16, 16, 20, 20]
Multiset of vertices powers:
{2:4, 4:16, 16:2, 20:2}
374. Structure 24N72M24C
DLSs within combinatorial structure:
DLS 1: 012345678120483567574168230603874152348657021257016384481532706836720415765201843
DLS 2: 012345678451872306836720415148253067603514782320687541765401823574168230287036154
DLS 3: 012345678451832706836720415148253067607514382320687541765401823574168230283076154
DLS 4: 012345678251876304836720415168453027403512786340287561725601843574168230687034152
DLS 5: 012345678251836704836720415168453027407512386340287561725601843574168230683074152
...
DLS 20: 012345678451832706836720451148253067607514382320687145765401823574168230283076514
DLS 21: 012345678251876304836720451168453027403512786340287165725601843574168230687034512
DLS 22: 012345678251836704836720451168453027407512386340287165725601843574168230683074512
DLS 23: 012345678278136054836027415765403821450712386341258760127680543504861237683574102
DLS 24: 012345678478132056836027415745203861650714382321658740167480523504861237283576104
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111111000000
100000000111111100000000
011111111000000000111100
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000011
011111111000000000000000
011111111000000000000000
000000010000000000000000
000000010000000000000000
000000000100000000000000
000000000100000000000000
000000000100000000000000
000000000100000000000000
000000000000010000000000
000000000000010000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120483567574168230603874152348657021257016384481532706836720415765201843
CF 2: 012345678120476835534812067473681250768053421856207314307568142241730586685124703
CF 3: 012345678120476853567284031605837142834561207756123480483710526348602715271058364
CF 4: 012345678123750864875016243768423051346872510450168327234607185607581432581234706
CF 5: 012345678123784560465127083657802431804236157780461325231658704376510842548073216
...
CF 20: 012345678120567843437681250683470512201854367865103724746028135574236081358712406
CF 21: 012345678123560847561487230740836152654072381876103524235718406408251763387624015
CF 22: 012345678123568047685170234246783510704812356458036721837201465360457182571624803
CF 23: 012345678230478561827156304684507213506821437763014852475683120341762085158230746
CF 24: 012345678123857046384506217806721534745168302468073125257410863631284750570632481
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 12]
Multiset of vertices powers:
{1:8, 8:13, 10:2, 12:1}
375. Structure 24N73M12C
DLSs within combinatorial structure:
DLS 1: 012345678123567804805724316548612730264873051386401527731280465457036182670158243
DLS 2: 012345678736280451184562703850724316507618234475036182623157840368401527241873065
DLS 3: 012345678736280451184652703850724316607518234475036182523167840368401527241873065
DLS 4: 012345678746280351183562704850723416507618243475036182624157830368401527231874065
DLS 5: 012345678746280351183652704850723416607518243475036182524167830368401527231874065
...
DLS 20: 012345678123567804275084316548612730864273051386401527731820465450736182607158243
DLS 21: 012345678731280456284561703850714362507628134475036281623157840368402517146873025
DLS 22: 012345678731280456284651703850714362607528134475036281523167840368402517146873025
DLS 23: 012345678741280356283561704850713462507628143475036281624157830368402517136874025
DLS 24: 012345678741280356283651704850713462607528143475036281524167830368402517136874025
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111111110000
100000000111111100000000
100000000111111100000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000001111
011111111000000000000000
011111111000000000000000
011111111000000000000000
000000100000000000000100
000000100000000000000000
000000100000000000000000
000000100000000000000000
000000000000100000000000
000000000000100010000000
000000000000100000000000
000000000000100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123567804805724316548612730264873051386401527731280465457036182670158243
CF 2: 012345678123486750375618042567834201648072315784103526456720183830251467201567834
CF 3: 012345678127538460364780512405813726580671243758026134871264305643102857236457081
CF 4: 012345678120487356635874120567132084784061235356728401843506712201653847478210563
CF 5: 012345678123608745678453120785160234450271386867534012346827501534012867201786453
...
CF 8: 012345678120487356235874160567132084784061235356728401843506712601253847478610523
CF 9: 012345678123874056784061235247586310605213847356728401560132784831407562478650123
CF 10: 012345678123486750385617042561834207648072315874103526456720183730258461207561834
CF 11: 012345678123067854608453721245670183570812346781234065834706512467581230356128407
CF 12: 012345678123064857604871235247586310785213046356728401560132784831407562478650123
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12]
Multiset of vertices powers:
{1:6, 2:2, 8:14, 12:2}
376. Structure 24N73M12C
DLSs within combinatorial structure:
DLS 1: 012345678120463857501687432458720361684031725763158204346872510875216043237504186
DLS 2: 012345678537684102468750321284501736120463857601237485875016243346872510753128064
DLS 3: 012345678460753821687204135728160354201537486153428067346872510875016243534681702
DLS 4: 012345678460753821607284135728160354281537406153428067346872510875016243534601782
DLS 5: 012345678160453827681207435428760351204531786753128064346872510875016243537684102
...
DLS 20: 012345678587604132463758021304521786128460357631287405875016243246873510750132864
DLS 21: 012345678537684102468720351384501726150462837601237485875016243246873510723158064
DLS 22: 012345678534681702768120354381507426450762831607234185875016243246873510123458067
DLS 23: 012345678160453827681027435428760351204531786753108264346872510875216043537684102
DLS 24: 012345678460753821687024135728160354201537486153408267346872510875216043534681702
Adjacency matrix:
010000000000000000000000
101111111110000000000000
010000000001111111000000
010000000001111111000000
010000000001111111110000
010000000001111111000000
010000000000000000000000
010000000001111111001100
010000000001111111000000
010000000001111111000000
010000000001111111000000
001111011110000000000000
001111011110000000000000
001111011110000000000000
001111011110000000000011
001111011110000000000000
001111011110000000000000
001111011110000000000000
000010000000000000000010
000010000000000000000000
000000010000000000000000
000000010000000000000000
000000000000001000100000
000000000000001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120463857501687432458720361684031725763158204346872510875216043237504186
CF 2: 012345678231658704854067213548736021607413582160582347723104865376821450485270136
CF 3: 012345678124657803837501264601874352285460137456183720743028516378216045560732481
CF 4: 012345678123760854581637402768453021845076213450128367376812540604281735237504186
CF 5: 012345678120476835568204713685730142854163207736521480471058326347682051203817564
...
CF 8: 012345678124078536873502164658410327730864251306751842465283710547126083281637405
CF 9: 012345678120463857581607432458720361604231785763158024346872510875016243237584106
CF 10: 012345678120463857501687432458720361684231705763158024346872510875016243237504186
CF 11: 012345678120476835568204713685730142854163207736581420471052386347628051203817564
CF 12: 012345678123870465658017234364701852847652013276483501480536127531268740705124386
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10]
Multiset of vertices powers:
{1:6, 2:2, 8:12, 10:4}
377. Structure 24N74M24C
DLSs within combinatorial structure:
DLS 1: 012345678120468357483526710675830124756014832831207465204673581567182043348751206
DLS 2: 012345678674803521201637485127486053348751206563128740480562317835270164756014832
DLS 3: 012345678634870521271603485120486357348751206567128043483562710805237164756014832
DLS 4: 012345678671803524204637185427186053348751206563428710180562347835270461756014832
DLS 5: 012345678631870524274603185420186357348751206567428013183562740805237461756014832
...
DLS 20: 012345678381426750467582031835207164756034812203671485674810523520168347148753206
DLS 21: 012345678861270534374806125480162357648751203527483016136528740205637481753014862
DLS 22: 012345678871203564604837125487162053348750216523486701160528347235671480756014832
DLS 23: 012345678864270531371806425180462357648751203527183046436528710205637184753014862
DLS 24: 012345678671803524204637185427186053348750216563428701180562347835271460756014832
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111111110000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
011111111000000000000000
011111111000000000000000
011111111000000000001111
011111111000000000001010
011111111000000000000000
011111111000000000000000
011111111000000000000000
001000000000000000000000
001000000000000000000000
001000000000000000000000
001000000000000000000000
000000000001100000000000
000000000001000000000000
000000000001100000000000
000000000001000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120468357483526710675830124756014832831207465204673581567182043348751206
CF 2: 012345678120487563835624107501863742648570231473016825764152380357208416286731054
CF 3: 012345678120473865768052431453687210687534102876201354241760583305128746534816027
CF 4: 012345678120463857458720361587634102375816240631207485846072513204581736763158024
CF 5: 012345678120473865768052431453687210287534106876201354641720583305168742534816027
...
CF 20: 012345678120483765854236107371650824638074251706518432463721580547802316285167043
CF 21: 012345678120456837768013425631520784543872061387164502476281350854607213205738146
CF 22: 012345678120576843567284031835461207674830125401758362746123580358602714283017456
CF 23: 012345678120473856537628140806532714451867032283014567764180325675201483348756201
CF 24: 012345678120568743487126350234870561376451802645203187801637425563782014758014236
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 12, 12]
Multiset of vertices powers:
{1:6, 2:2, 8:13, 10:1, 12:2}
378. Structure 24N74M24C
DLSs within combinatorial structure:
DLS 1: 012345678120467835235708416784630152857014263601283547346851720473526081568172304
DLS 2: 012345678731608542428567301160472835346851720573126084857014263205783416684230157
DLS 3: 012345678631208547468572301170426835346851720523167084857014263705683412284730156
DLS 4: 012345678781630542423567081168472305346851720570126834857014263235708416604283157
DLS 5: 012345678681230547463572081178426305346851720520167834857014263735608412204783156
...
DLS 20: 012345678120467835235708416784630152807514263651283047346851720473026581568172304
DLS 21: 012345678237108465148567302450712836326851740573426081861074253604283517785630124
DLS 22: 012345678237104865148567302850712436326851740573426081461078253604283517785630124
DLS 23: 012345678234871065478562301851204736306457182583716240760128453627083514145630827
DLS 24: 012345678287130465143567082458712306326851740570426831861074253634208517705683124
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111111000000
100000000111111100110000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000001111
011111111000000000000000
001000000000000000000000
001000000000000000001100
000100000000000000000000
000100000000000000000000
000000000000001001000000
000000000000001001000000
000000000000001000000000
000000000000001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120467835235708416784630152857014263601283547346851720473526081568172304
CF 2: 012345678120476835635708412281630547357814260704283156846051723473562081568127304
CF 3: 012345678120476835847051263235680147356814720681703452704238516463527081578162304
CF 4: 012345678120487536864571023307862145735018462251736804476250381648123750583604217
CF 5: 012345678120567834346851720684730152857014263701283546235608417563472081478126305
...
CF 20: 012345678120467835235708416784630152807514263651283047346851720473026581568172304
CF 21: 012345678120567834634870521278654310563012487347208165856431702401783256785126043
CF 22: 012345678120467835634870521278654310563012487357208164846531702401783256785126043
CF 23: 012345678123068547476251380547832106238174065760583214851607423304716852685420731
CF 24: 012345678120567834654830721238674510367012485745208163876451302401783256583126047
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 2, 2, 3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 12]
Multiset of vertices powers:
{1:5, 2:2, 3:1, 8:13, 10:2, 12:1}
379. Structure 24N74M24C
DLSs within combinatorial structure:
DLS 1: 012345678120478536871056243263710485587264310654183702405637821346802157738521064
DLS 2: 012345678463057821347268150526804317201736485738521064180472536875610243654183702
DLS 3: 012345678863057241327864150586402317401736825738521064140278536275610483654183702
DLS 4: 012345678463017825347268150526804317205736481738521064180472536871650243654183702
DLS 5: 012345678863017245327864150586402317405736821738521064140278536271650483654183702
...
DLS 20: 012345678387204156275038461461750823140862537654183702803617245528476310736521084
DLS 21: 012345678120478536807516243263157480785264301654083712471630825346802157538721064
DLS 22: 012345678180274536207516483463157820745862301654083712871630245326408157538721064
DLS 23: 012345678873650241326807154580472316761034825438521067147268530205716483654183702
DLS 24: 012345678873610245326807154580472316765034821438521067147268530201756483654183702
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111111110000
100000000111111100000000
100000000111111100000000
100000000111111100001100
100000000111111100000000
100000000111111100000000
100000000111111100000000
011111111000000000000000
011111111000000000000000
011111111000000000000011
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000011
001000000000000000000000
001000000000000000000000
001000000000000000000000
001000000000000000000000
000001000000000000000000
000001000000000000000000
000000000001000100000000
000000000001000100000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536871056243263710485587264310654183702405637821346802157738521064
CF 2: 012345678123568047874603521235870164756014832601237485587426310460182753348751206
CF 3: 012345678120463857453728061581634702875016243604287135346872510237501486768150324
CF 4: 012345678120468537403716285875630421586274310734581062261057843347802156658123704
CF 5: 012345678120567834735824061607482153873610245381756402546278310254103786468031527
...
CF 20: 012345678123056847465187320248730516580462731836271054671823405357604182704518263
CF 21: 012345678120478536807516243263157480785264301654083712471630825346802157538721064
CF 22: 012345678123754860375186204460821357806472513758063421684507132237618045541230786
CF 23: 012345678120468537236187405478532160654870321783014256301756842865203714547621083
CF 24: 012345678120476835851237046736802514347568102605124783284750361473681250568013427
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 12]
Multiset of vertices powers:
{1:6, 2:2, 8:12, 10:3, 12:1}
380. Structure 24N75M24C
DLSs within combinatorial structure:
DLS 1: 012345678120478563576204381647832105864517032251763840735081426308126754483650217
DLS 2: 012345678247136805483650217820517463358762140165478032601823754734081526576204381
DLS 3: 012345678257136840483650217825417063308762154164078532641823705730581426576204381
DLS 4: 012345678248736105483650217720581463351862740865417032607123854134078526576204381
DLS 5: 012345678258736140483650217725481063301862754864017532647123805130578426576204381
...
DLS 20: 012345678134507826576284301307826154725018463641732085860471532258163740483650217
DLS 21: 012345678348726105183650247720581463254863710865417032607132854431078526576204381
DLS 22: 012345678248736105183650247720581463354862710865417032607123854431078526576204381
DLS 23: 012345678346217805438650217180573426253768140725481063601832754874026531567104382
DLS 24: 012345678356217840438650217185473026203768154724081563641832705870526431567104382
Adjacency matrix:
011111111000000000000000
100000000111111111000000
100000000111101011000000
100000000111101011000000
100000000111101011110000
100000000111101011000000
100000000111101011000000
100000000111101011000000
100000000111101011000000
011111111000000000000000
011111111000000000000000
011111111000000000001100
011111111000000000001100
010000000000000000000000
011111111000000000000000
010000000000000000000010
011111111000000000000000
011111111000000000000011
000010000000000000000000
000010000000000000000000
000000000001100000000000
000000000001100000000000
000000000000000101000000
000000000000000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478563576204381647832105864517032251763840735081426308126754483650217
CF 2: 012345678120476835347851260235680147856014723681703452704238516463527081578162304
CF 3: 012345678120567834604738512231680457857014263785203146346851720573426081468172305
CF 4: 012345678120486753248751306854670132736014825675203481307128564561837240483562017
CF 5: 012345678120487536864571023607832145735018462351726804476250381248163750583604217
...
CF 20: 012345678120476835235708416784630152807514263651283047346851720473062581568127304
CF 21: 012345678120567843368250714584703162835416207671024385746138520457682031203871456
CF 22: 012345678120567834468250713583704162835416207671023485746138520357682041204871356
CF 23: 012345678120468753853217046384652107201873564675124380746530821538706412467081235
CF 24: 012345678120467835634751082285604317857013264701238546346580721473826150568172403
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{1:4, 2:4, 8:11, 10:5}
381. Structure 24N76M12C
DLSs within combinatorial structure:
DLS 1: 012345678120473865734856021853607214287534106476281350601728543345160782568012437
DLS 2: 012345678645738102201564783476281350168453027853607214534072861720816435387120546
DLS 3: 012345678685730142241568703476281350164053827853607214530872461728416035307124586
DLS 4: 012345678645738102201564783476281350768453021853607214534012867120876435387120546
DLS 5: 012345678685730142241568703476281350764053821853607214530812467128476035307124586
...
DLS 20: 012345678170423865734856021853602714287534106426781350601278543345160287568017432
DLS 21: 012345678385702146641538702476281350724056831853627014560813427138470265207164583
DLS 22: 012345678385702146641538702476281350124056837853627014560873421738410265207164583
DLS 23: 012345678685730142246518703471286350164053827853107264530872416728461035307624581
DLS 24: 012345678645738102206514783471286350168453027853107264534072816720861435387620541
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111111000000
100000000111111100110000
100000000111111111000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
011111111000000000001100
011111111000000000000011
011111111000000000001100
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
001010000000000000000000
001010000000000000000000
000100000000000000000000
000100000000000000000000
000000000101000000000000
000000000101000000000000
000000000010000000000000
000000000010000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120473865734856021853607214287534106476281350601728543345160782568012437
CF 2: 012345678123487560485761023760124385204836157657208431831652704376510842548073216
CF 3: 012345678120473865734856021853607214687534102476281350201768543345120786568012437
CF 4: 012345678120486735603718542836521407754163280481057326367204851548672013275830164
CF 5: 012345678123476805804732561685124730547063182736258014251807346470681253368510427
...
CF 8: 012345678120487365765124083483761520851632704637208451204856137376510842548073216
CF 9: 012345678120487365571863042754632180348570216863124507205716834637208451486051723
CF 10: 012345678120476853834752061603124785547863102756208314281037546475681230368510427
CF 11: 012345678123487560485761023706124385264830157657208431831652704370516842548073216
CF 12: 012345678123708564354860217285674130748531026860157342437216805601482753576023481
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{1:4, 2:4, 8:10, 10:6}
382. Structure 24N76M23C
DLSs within combinatorial structure:
DLS 1: 012345678120486735836521407473850162568274013745613280601738524357102846284067351
DLS 2: 012345678673810524258103746527486013745632180436521807384067251801754362160278435
DLS 3: 012345678673810524258163740527486013745032186436521807384607251801754362160278435
DLS 4: 012345678673810524258103746527486013745632180436571802384067251801254367160728435
DLS 5: 012345678673810524258163740527486013745032186436571802384607251801254367160728435
...
DLS 20: 012345678320486715836512407471850326568174032745263180103728564257601843684037251
DLS 21: 012345678368204751845612307671830524230571846754163280106728435527486013483057162
DLS 22: 012345678360284751845612307671830524238571046754163280106728435527406813483057162
DLS 23: 012345678320468715836512407471850326568174032745283160103726584257601843684037251
DLS 24: 012345678820436715386512407471850326568174032745263180103728564257601843634087251
Adjacency matrix:
011111111111111110000000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001111100
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110000
100000000000000001110011
100000000000000001110011
100000000000000001111100
100000000000000001110000
100000000000000001110011
100000000000000001110011
011111111111111110000000
011111111111111110000000
011111111111111110000000
000001000000010000000000
000001000000010000000000
000000000001100110000000
000000000001100110000000
Different CFs set within combinatorial structure:
CF 1: 012345678120486735836521407473850162568274013745613280601738524357102846284067351
CF 2: 012345678120678435678210543786452301543867012254103786867534120301786254435021867
CF 3: 012345678123750846458163027687501432506237184731684205345826710874012563260478351
CF 4: 012345678123470856784563201836157420648032715375618042261704583507281364450826137
CF 5: 012345678123750864458163027687501432504237186731486205365824710876012543240678351
...
CF 19: 012345678124583706348170562563704821256831047487256130701628453875062314630417285
CF 20: 012345678230678154546781230128564703307812546654037821873206415465120387781453062
CF 21: 012345678230457816376218450481576302645821037867034125503182764154760283728603541
CF 22: 012345678230457816376281450481576302645128037867034125503812764154760283728603541
CF 23: 012345678123478506408537162567183420734261085856704231385026714640812357271650843
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 16, 16, 16, 16]
Multiset of vertices powers:
{2:2, 4:12, 6:6, 16:4}
383. Structure 24N76M24C
DLSs within combinatorial structure:
DLS 1: 012345678120467853734680125683502417278136540341758206856014732507821364465273081
DLS 2: 012345678541728306308157264475263081724610853830476125267831540156084732683502417
DLS 3: 012345678541728306308157264475263081824610753730486125267831540156074832683502417
DLS 4: 012345678720486153834610725683502417267831540348157206156074832501728364475263081
DLS 5: 012345678720486153834610725683502417567831240348127506156074832201758364475263081
...
DLS 20: 012345678561728340348157206475263081720416853836074125207831564154680732683502417
DLS 21: 012345678361758240248173506435267081870416325756084132503821764124630857687502413
DLS 22: 012345678341758206208173564435267081874610325750486132563821740126034857687502413
DLS 23: 012345678120476853734680125683502417568137042341728506856214730207851364475063281
DLS 24: 012345678720486153834610725683502417567831042348127506156274830201758364475063281
Adjacency matrix:
011000000000000000000000
100111111111110000000000
100111110011110000000000
011000000000001111110000
011000000000001111110000
011000000000001111110000
011000000000000000000000
011000000000001111110000
010000000000000000000000
010000000000000000000000
011000000000001111111100
011000000000001111111100
011000000000001111110000
011000000000001111110000
000111010011110000000000
000111010011110000000000
000111010011110000000000
000111010011110000000000
000111010011110000000011
000111010011110000000000
000000000011000000000000
000000000011000000000000
000000000000000000100000
000000000000000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678120467853734680125683502417278136540341758206856014732507821364465273081
CF 2: 012345678120476835847051263231680457356814720685703142704238516463527081578162304
CF 3: 012345678120486357748560123674152830267031584835724016356208741501873462483617205
CF 4: 012345678120468357348506721634752810567031482875124036756280143201873564483617205
CF 5: 012345678120468357348506721634752810561037482875124036756280143207813564483671205
...
CF 20: 012345678120478563576204381357862140864517032641723805735081426208136754483650217
CF 21: 012345678123057846236814057645701283780136425451278360807462531364580712578623104
CF 22: 012345678120473865854610723547821306631758240375206481763084152208167534486532017
CF 23: 012345678120458736764132580583706124835614207671083452457260813348527061206871345
CF 24: 012345678120478356758206143864152037281637504635724810346580721507813462473061285
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 12]
Multiset of vertices powers:
{1:4, 2:4, 8:11, 10:4, 12:1}
384. Structure 24N76M24C
DLSs within combinatorial structure:
DLS 1: 012345678120678435754086123561827340387154206645203817836410752208731564473562081
DLS 2: 012345678341827506508731264820674135756410823473562081267158340134086752685203417
DLS 3: 012345678341827506508731264720684135856410723473562081267158340134076852685203417
DLS 4: 012345678124076835756480123541837206207158364685203417830614752368721540473562081
DLS 5: 012345678420671835751086423564837210247158306685203147836410752308724561173562084
...
DLS 20: 012345678561837240248751306756480123834016752473562081307128564120674835685203417
DLS 21: 012345678724086135856410723548721306301857264685203417170634852263178540437562081
DLS 22: 012345678720684135854016723568721340341857206685203417176430852203178564437562081
DLS 23: 012345678174026835756480123541832706207158364685703412830614257368271540423567081
DLS 24: 012345678170624835754086123561832740247158306685703412836410257308271564423567081
Adjacency matrix:
011000000000000000000000
100111111111110000000000
100111111111110000000000
011000000000001111110000
011000000000000000000000
011000000000001111110000
011000000000000000000000
011000000000001111110000
011000000000001111110000
011000000000001111110000
011000000000000000000000
011000000000001111110000
011000000000001111110000
011000000000001111110000
000101011101110000001100
000101011101110000000011
000101011101110000000000
000101011101110000000000
000101011101110000000000
000101011101110000000000
000000000000001000000000
000000000000001000000000
000000000000000100000000
000000000000000100000000
Different CFs set within combinatorial structure:
CF 1: 012345678120678435754086123561827340387154206645203817836410752208731564473562081
CF 2: 012345678120467835847051263281630457356814720605783142734208516463572081578126304
CF 3: 012345678120486357748560123674152830587631402835724016356208741201873564463017285
CF 4: 012345678120468357348506721634752810281637504875124036756280143507813462463071285
CF 5: 012345678120568743746132580804753126538416207681074352357620814465287031273801465
...
CF 20: 012345678120486357358260741834752016261037584675124830746508123507813462483671205
CF 21: 012345678120576834607438512235680147854017263481203756376851420543762081768124305
CF 22: 012345678120568347748206153587613402834752016463071825356420781675184230201837564
CF 23: 012345678120478356348506721634752810281637504865124037756280143507813462473061285
CF 24: 012345678120586347748260153583617402674158230461073825356402781835724016207831564
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 12, 12]
Multiset of vertices powers:
{1:4, 2:4, 8:12, 10:2, 12:2}
385. Structure 24N76M24C
DLSs within combinatorial structure:
DLS 1: 012345678120463857534876021873501264201638745465287310386754102647120583758012436
DLS 2: 012345678385120746647538102456287310168453027873601254720816435534072861201764583
DLS 3: 012345678385120746647538102456287310768453021873601254120876435534012867201764583
DLS 4: 012345678720413865134856027873601254605738142456287310387124506241560783568072431
DLS 5: 012345678724813065138056427873601254685734102456287310347120586201568743560472831
...
DLS 20: 012345678685130742246578103457286310738452061863701254170863425524017836301624587
DLS 21: 012345678345128706607534182456287310860753421783601254124076835538412067271860543
DLS 22: 012345678645138702207564183456287310830752461783601254164073825528416037371820546
DLS 23: 012345678120453867534876021873601452201538746456287310385762104647120583768014235
DLS 24: 012345678720413865134856027873601452205738146456287310387162504641520783568074231
Adjacency matrix:
011000000000000000000000
100111111111000000000000
100111111111000000000000
011000000000111111000000
011000000000111111110000
011000000000111111000000
011000000000111111001100
011000000000111111000000
011000000000111111000000
011000000000111111000000
011000000000111111000000
011000000000000000000000
000111111110000000000011
000111111110000000000000
000111111110000000000011
000111111110000000000000
000111111110000000000000
000111111110000000000000
000010000000000000000000
000010000000000000000000
000000100000000000000000
000000100000000000000000
000000000000101000000000
000000000000101000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120463857534876021873501264201638745465287310386754102647120583758012436
CF 2: 012345678120487563763124085485761320237856401601238754854602137576013842348570216
CF 3: 012345678120456837738012465347560182564873021685124703876201354453687210201738546
CF 4: 012345678120486753471850326836521407754163280683017542367204815548672031205738164
CF 5: 012345678120568743408173265845607132674230581736051824351782406267814350583426017
...
CF 20: 012345678123068745274630581605873124356714802831257460580426317467182053748501236
CF 21: 012345678123586047548701362685470231374862150407213586231658704856027413760134825
CF 22: 012345678120483567834761205253874016748650123487016352601532784576128430365207841
CF 23: 012345678120453867345876210458760321201634785763128504634087152876512043587201436
CF 24: 012345678120568437463782510507426183738214056681057342354670821875103264246831705
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{1:4, 2:4, 8:10, 10:6}
386. Structure 24N77M24C
DLSs within combinatorial structure:
DLS 1: 012345678120478356475283160386127405734860521658014237863502714547631082201756843
DLS 2: 012345678247136805863502714720864531506721483381657042475283160638410257154078326
DLS 3: 012345678287136045863502714728460531546721803301657482475283160634018257150874326
DLS 4: 012345678287136045863502714728460531546721803401657382375284160634018257150873426
DLS 5: 012345678247156803863502714720864531306721485581637042475283160638410257154078326
...
DLS 20: 012345678120478356475283160386107425734862501658014237863520714547631082201756843
DLS 21: 012345678530478126471283560286517403754860231628054317863102754347621085105736842
DLS 22: 012345678534870126471283560246517083758064231620458317863102754307621845185736402
DLS 23: 012345678285716043836502714128470356643127805507631482471283560754068231360854127
DLS 24: 012345678245716803836502714120874356603127485587631042471283560758460231364058127
Adjacency matrix:
011111111110000000000000
100000000001111111000000
100000000001111111000000
100000000001000000000000
100000000001111111000000
100000000001111111000000
100000000001111111110000
100000000001111111000000
100000000001000000000000
100000000001111111111100
100000000001111111000000
011111111110000000000000
011011110110000000000000
011011110110000000000000
011011110110000000000000
011011110110000000000000
011011110110000000000000
011011110110000000000011
000000100100000000000000
000000100100000000000000
000000000100000000000000
000000000100000000000001
000000000000000001000000
000000000000000001000100
Different CFs set within combinatorial structure:
CF 1: 012345678120478356475283160386127405734860521658014237863502714547631082201756843
CF 2: 012345678120456837538072461381760542764813025607524183456287310873601254245138706
CF 3: 012345678120483567874160235653874102368257041287016354401532786536728410745601823
CF 4: 012345678120487356578126430453672801245831067637014582301568724864750213786203145
CF 5: 012345678120476835738052461381760542564813027607524183456287310873601254245138706
...
CF 20: 012345678120478356475283160386107425734862501658014237863520714547631082201756843
CF 21: 012345678123476805651820437504761283860153742437208516746082351278534160385617024
CF 22: 012345678120487536734652180573816204658270413486031752865104327347528061201763845
CF 23: 012345678120453867346872510853764021507238146768021354631587402475106283284610735
CF 24: 012345678124538067768210453435687210387452106876103524643021785501876342250764831
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 12]
Multiset of vertices powers:
{1:2, 2:6, 8:11, 10:4, 12:1}
387. Structure 24N78M24C
DLSs within combinatorial structure:
DLS 1: 012345678120473856537628140481532067203867514856014732764180325675201483348756201
DLS 2: 012345678483017562864170325345201786628753401170486253537628140701562834256834017
DLS 3: 012345678483017562864170325345281706620753481178406253537628140701562834256834017
DLS 4: 012345678120483756537628140481532067203867514756014832864170325675201483348756201
DLS 5: 012345678120473856537628104481532067243867510856014732764180325675201483308756241
...
DLS 20: 012345678486037512864170325145286703320751486678403251537628140703512864251864037
DLS 21: 012345678786032514864170325125786403370451286648203751537628140203514867451867032
DLS 22: 012345678783012564864170325325781406670453281148206753537628140201564837456837012
DLS 23: 012345678483017562864170325345201786628753401170426853537682140701568234256834017
DLS 24: 012345678486037512864170325145206783328751406670423851537682140703518264251864037
Adjacency matrix:
011000000000000000000000
100111111111111100000000
100111111111111100000000
011000000000000011111100
011000000000000000000000
011000000000000000000000
011000000000000011111100
011000000000000011111111
011000000000000011111100
011000000000000000000000
011000000000000011111100
011000000000000000000000
011000000000000000000000
011000000000000011111100
011000000000000011111100
011000000000000011111100
000100111010011100000000
000100111010011100000000
000100111010011100000000
000100111010011100000000
000100111010011100000000
000100111010011100000000
000000010000000000000000
000000010000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120473856537628140481532067203867514856014732764180325675201483348756201
CF 2: 012345678120478536463582710306751842734860251658014327875203164541627083287136405
CF 3: 012345678120486735603718542736521480854163207481057326367204851548672013275830164
CF 4: 012345678120483756537628140481532067203867514756014832864170325675201483348756201
CF 5: 012345678120473856537628104481532067243867510856014732764180325675201483308756241
...
CF 20: 012345678120473865734856021853607214607538142476281350281764503345120786568012437
CF 21: 012345678120586347437658102281470536874061253605213784543702861356827410768134025
CF 22: 012345678120487365765124083483761520857632401631208754204856137376510842548073216
CF 23: 012345678120458736463782510306571842734860251678014325857203164541627083285136407
CF 24: 012345678120483567576128430603872154384657021257014386841536702438760215765201843
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 14, 14]
Multiset of vertices powers:
{1:2, 2:6, 8:13, 10:1, 14:2}
388. Structure 24N78M24C
DLSs within combinatorial structure:
DLS 1: 012345678120567834468250713601724385835416207584073162746138520357682041273801456
DLS 2: 012345678684071325201783456327560841746132580458627013835416207573804162160258734
DLS 3: 012345678681074325204783156327560814746132580158627043835416207573801462460258731
DLS 4: 012345678128560734467258013671804325835416207504783162746132580350627841283071456
DLS 5: 012345678168250734457628013271804356835416207604783125746132580320567841583071462
...
DLS 20: 012345678475801263186072534538467012751623480640138725824516307203784156367250841
DLS 21: 012345678781064325204783156326570814647132580158627043835416207573801462460258731
DLS 22: 012345678681074325264783150327560814740132586158627043835416207573801462406258731
DLS 23: 012345678784061325201783456326570841647132580458627013835416207573804162160258734
DLS 24: 012345678684071325261783450327560841740132586458627013835416207573804162106258734
Adjacency matrix:
011000000000000000000000
100111111111000000000000
100111111111000000000000
011000000000111111110000
011000000000111111000000
011000000000111111000000
011000000000111111001111
011000000000111111000000
011000000000111111000000
011000000000111111000000
011000000000000000000000
011000000000111111001111
000111111101000000000000
000111111101000000000000
000111111101000000000000
000111111101000000000000
000111111101000000000000
000111111101000000000000
000100000000000000000000
000100000000000000000000
000000100001000000000000
000000100001000000000000
000000100001000000000000
000000100001000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120567834468250713601724385835416207584073162746138520357682041273801456
CF 2: 012345678120568743746132580501783426835416207683074152357620814468257031274801365
CF 3: 012345678120568734746132580501784326835416207684073152457620813368257041273801465
CF 4: 012345678120486357348560721834752016261037584675124830756208143507813462483671205
CF 5: 012345678120476853834610725673502481248731506367158240756084132501827364485263017
...
CF 20: 012345678120476835634751082285604317857013264701238546346580721473862150568127403
CF 21: 012345678120568734746132580801754326538416207684073152457620813365287041273801465
CF 22: 012345678120678435764081523347852106835417062251736840576204381608123754483560217
CF 23: 012345678120568743746132580801753426538416207683074152357620814465287031274801365
CF 24: 012345678120583746748062531385710462864237015407156283536804127673421850251678304
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 12, 12]
Multiset of vertices powers:
{1:2, 2:6, 8:11, 10:3, 12:2}
389. Structure 24N78M24C
DLSs within combinatorial structure:
DLS 1: 012345678120463857531607482458720361687234105763158024846072513375816240204581736
DLS 2: 012345678587604132453728061204531786120463857631287405375816240846072513768150324
DLS 3: 012345678584601732753128064201537486420763851637284105375816240846072513168450327
DLS 4: 012345678587604132423758061204531786150463827631287405375816240846072513768120354
DLS 5: 012345678584601732723158064201537486450763821637284105375816240846072513168420357
...
DLS 20: 012345678583601742724158063201537486350764821647283105475816230836072514168420357
DLS 21: 012345678574608312823751064201587436450163827687234105735816240146072583368420751
DLS 22: 012345678574608312853721064201587436420163857687234105735816240146072583368450721
DLS 23: 012345678234681705158270364581702436423568017607134582375816240846027153760453821
DLS 24: 012345678284601735153278064501732486420563817637184502375816240846027153768450321
Adjacency matrix:
011111111000000000000000
100000000111111111000000
100000000011110111000000
100000000111111111000000
100000000011110111000000
100000000011110111000000
100000000011110111000000
100000000011110111000000
100000000011110111000000
010100000000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000110000
011111111000000000110000
010100000000000000000000
011111111000000000000000
011111111000000000001100
011111111000000000001111
000000000000110000000000
000000000000110000000000
000000000000000011000000
000000000000000011000000
000000000000000001000000
000000000000000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678120463857531607482458720361687234105763158024846072513375816240204581736
CF 2: 012345678120456837568073421681720543734812065307564182456287310873601254245138706
CF 3: 012345678120463857584601732458720361601237485763158024876012543345876210237584106
CF 4: 012345678120476835768053421681720543534812067307564182456287310873601254245138706
CF 5: 012345678120463857504681732458720361681237405763158024876012543345876210237504186
...
CF 20: 012345678120463857504682731458710362681237405763158024876021543345876210237504186
CF 21: 012345678120567834386251407741836025564072183853124760675480312408713256237608541
CF 22: 012345678120567834586231407741856023364072185853124760675480312408713256237608541
CF 23: 012345678120453867346872510863724051607538142758061324531287406475106283284610735
CF 24: 012345678120476835534821067876102354368057421457683210601538742245760183783214506
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 12]
Multiset of vertices powers:
{1:2, 2:6, 8:10, 10:5, 12:1}
390. Structure 24N78M24C
DLSs within combinatorial structure:
DLS 1: 012345678120453867345876210468720351281634705753168024634507182876012543507281436
DLS 2: 012345678537284106876012543684501732460728351201637485153460827345876210728153064
DLS 3: 012345678534281706876012543681507432760128354207634185453760821345876210128453067
DLS 4: 012345678587204136876012543604531782468723051231687405150468327345876210723150864
DLS 5: 012345678584201736876012543601537482768123054237684105450768321345876210123450867
...
DLS 20: 012345678120453867345867210468720351281634705653178024734506182876012543507281436
DLS 21: 012345678573284106836012547684501732450728361201673485167450823745836210328167054
DLS 22: 012345678573284106836012547684501732460728351201673485157460823745836210328157064
DLS 23: 012345678537284106871062543184506732460728351206137485653410827345871260728653014
DLS 24: 012345678587204136871062543104536782468723051236187405650418327345871260723650814
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111111000000
100000000111111100110000
100000000111111100000000
100000000111111100110000
100000000111111100000000
100000000111111100000000
100000000111111111000000
011111111000000000000000
011111111000000000001100
011111111000000000001100
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000011
001000001000000000000000
001000001000000000000000
000101000000000000000000
000101000000000000000000
000000000011000000000000
000000000011000000000000
000000000000000100000000
000000000000000100000000
Different CFs set within combinatorial structure:
CF 1: 012345678120453867345876210468720351281634705753168024634507182876012543507281436
CF 2: 012345678120567834657482103765834021304156782438021567546278310873610245281703456
CF 3: 012345678120456837738012465647520183564873021385164702876201354453687210201738546
CF 4: 012345678120463857468750321581634702875016243634207185346872510207581436753128064
CF 5: 012345678120487563763124085485761320201856734634208157857632401546073812378510246
...
CF 20: 012345678120453867345867210468720351281634705653178024734506182876012543507281436
CF 21: 012345678120567834657402183765834012384256701438021567546178320873610245201783456
CF 22: 012345678120567834657482103765834012304256781438021567546178320873610245281703456
CF 23: 012345678123467805657280431436802517860153742584671023741028356278534160305716284
CF 24: 012345678120463857268750341581634702875016423634207185346872510407581236753128064
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{1:2, 2:6, 8:9, 10:7}
391. Structure 24N80M10C
DLSs within combinatorial structure:
DLS 1: 012345678120476835734680152361827540248751306685203417856014723507138264473562081
DLS 2: 012345678541738206268157340150684723734016852473562081307821564826470135685203417
DLS 3: 012345678541738206268157340150674823834016752473562081307821564726480135685203417
DLS 4: 012345678341728506568137240120684735754016823473562081207851364836470152685203417
DLS 5: 012345678341728506568137240120674835854016723473562081207851364736480152685203417
...
DLS 20: 012345678120476835735680412361827540258714306684203157846051723407538261573162084
DLS 21: 012345678685203417761058342473562081328170564857624103134786250206417835540831726
DLS 22: 012345678420176835731680452364827510248751306685203147856014723507438261173562084
DLS 23: 012345678420176835731680452264837510348751206685203147856014723507428361173562084
DLS 24: 012345678361728540408537261126480735740651823573162084257814306835076412684203157
Adjacency matrix:
011111111111000000000000
100000000000111111100000
100000000000111111100000
100000000000111111100000
100000000000111111100000
100000000000000000010000
100000000000111111101110
100000000000111111100110
100000000000000000100110
100000000000000000100110
100000000000111111100000
100000000000111111100000
011110110011000000000000
011110110011000000000000
011110110011000000000000
011110110011000000000000
011110110011000000000000
011110110011000000000000
011110111111000000000000
000001000000000000000000
000000100000000000000001
000000111100000000000000
000000111100000000000000
000000000000000000001000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835734680152361827540248751306685203417856014723507138264473562081
CF 2: 012345678120467835356814720235780146847051263684203517701638452563172084478526301
CF 3: 012345678123708456365824710537461802748630521481276035874052163206517384650183247
CF 4: 012345678123708546487261305648130257364852710750683421501476832875024163236517084
CF 5: 012345678120476835857014263785630142346851720204783516631208457563127084478562301
CF 6: 012345678120487563763058412845673201458710326376204185637521840201836754584162037
CF 7: 012345678120476835734680152261837540348751206685203417856014723507128364473562081
CF 8: 012345678120568743736412580684701352548136207873054126457620831365287014201873465
CF 9: 012345678124587036706218543457836102835071264368104725580462317641723850273650481
CF 10: 012345678120476835735680412361827540258714306684203157846051723407538261573162084
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 11, 11]
Multiset of vertices powers:
{1:2, 2:2, 4:4, 8:12, 10:2, 11:2}
392. Structure 24N80M12C
DLSs within combinatorial structure:
DLS 1: 012345678124076835381564702473681250768453021856207314530812467247130586605728143
DLS 2: 012345678347568102138076425856207314205134786473681250681720543720453861564812037
DLS 3: 012345678347528106138076425856207314605134782473681250281760543720453861564812037
DLS 4: 012345678387560142134876025856207314245138706473681250601724583728053461560412837
DLS 5: 012345678387520146134876025856207314645138702473681250201764583728053461560412837
...
DLS 20: 012345678164072835287534106473186250328457061856203714530861427641720583705618342
DLS 21: 012345678347528106138076425806257314650134782473681250281760543725403861564812037
DLS 22: 012345678347568102138076425806257314250134786473681250681720543725403861564812037
DLS 23: 012345678387610542134872065826507314541238706473186250605724183768053421250461837
DLS 24: 012345678347618502138072465826507314501234786473186250685720143760453821254861037
Adjacency matrix:
011111111000000000000000
100000000111111111000000
100000000111111111000000
100000000110011111000000
100000000110011111000000
100000000110011111000000
100000000110011111000000
100000000110011111110000
100000000110011111000000
011111111000000000001100
011111111000000000001100
011000000000000000001100
011000000000000000001100
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000011
000000010000000000000000
000000010000000000000000
000000000111100000000000
000000000111100000000000
000000000000000001000000
000000000000000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678124076835381564702473681250768453021856207314530812467247130586605728143
CF 2: 012345678120478356475283160386127405734860521658014237863502714541736082207651843
CF 3: 012345678120463857753128064287631405845076213501284736376812540634507182468750321
CF 4: 012345678120463857531607482468750321684231705753128064346872510875016243207584136
CF 5: 012345678120463857531687402468750321604231785753128064346872510875016243287504136
...
CF 8: 012345678120456837764813025307564182538072461645128703876201354453687210281730546
CF 9: 012345678120463857753128064287631405548076213801254736376812540634507182465780321
CF 10: 012345678120478356475283160386107425734862501658014237863520714541736082207651843
CF 11: 012345678120476835538021467476182350364857021857603214641530782205768143783214506
CF 12: 012345678120453867345876210853764021607538142768021354231687405476102583584210736
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{1:4, 4:4, 8:10, 10:6}
393. Structure 24N80M12C
DLSs within combinatorial structure:
DLS 1: 012345678120486537376128450543870162738654021604713285851032746465207813287561304
DLS 2: 012345678843072156135760284478256013261438705386127540624501837507814362750683421
DLS 3: 012345678853072146134760285478256013261538704386127450625401837507814362740683521
DLS 4: 012345678843012756135760284478256013267438105386127540624501837501874362750683421
DLS 5: 012345678853012746134760285478256013267538104386127450625401837501874362740683521
...
DLS 20: 012345678138704526276438150563810742620157834401672385857023461745286013384561207
DLS 21: 012345678823074156138760245275486013461538702346157820684201537507812364750623481
DLS 22: 012345678823674150138760245275486013461538702340157826684201537507812364756023481
DLS 23: 012345678823014756138760245275486013467538102346157820684201537501872364750623481
DLS 24: 012345678823614750138760245275486013467538102340157826684201537501872364756023481
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111111110000
100000000111111100000000
100000000111111111110000
100000000111111100000000
011111111000000000001111
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000001111
011111111000000000000000
011111111000000000000000
000001010000000000000000
000001010000000000000000
000001010000000000000000
000001010000000000000000
000000000100010000000000
000000000100010000000000
000000000100010000000000
000000000100010000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120486537376128450543870162738654021604713285851032746465207813287561304
CF 2: 012345678123786450501867234364571802256430187745628013830254761678012345487103526
CF 3: 012345678123068745264183057458732160547810326381576402876201534630457281705624813
CF 4: 012345678123786450501867234364521807756430182245678013830254761678012345487103526
CF 5: 012345678123058746264183057458732160647810325381576204876401532530267481705624813
...
CF 8: 012345678120487536647823150504162387738654021263018745856730412375201864481576203
CF 9: 012345678120483765708261534351724806876512340483056127567130482634807251245678013
CF 10: 012345678120483765708261534351724086876512340483056127567138402634807251245670813
CF 11: 012345678120567843264081735751603482348710526435278160876152304607834251583426017
CF 12: 012345678120567843264081735751603284348710526435278160876154302607832451583426017
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12]
Multiset of vertices powers:
{2:8, 8:12, 12:4}
394. Structure 24N80M12C
DLSs within combinatorial structure:
DLS 1: 012345678120458736365271084453782160534867201608514327271036845847603512786120453
DLS 2: 012345678258014367403786125127603584786120453365478012840251736671532840534867201
DLS 3: 012345678251034867408716325827601534786120453165473082340258716673582140534867201
DLS 4: 012345678258016347603784125127403586786120453345678012860251734471532860534867201
DLS 5: 012345678251036847608714325827401536786120453145673082360258714473582160534867201
...
DLS 20: 012345678135278046367401582204583167543867201678012435451736820820654713786120354
DLS 21: 012345678271534860458016327825671034186720453760453182347208516603182745534867201
DLS 22: 012345678248016357603784125127503486786120543354678012860251734571432860435867201
DLS 23: 012345678241036857608714325827501436786120543154673082360258714573482160435867201
DLS 24: 012345678271536840658014327825471036186720453740653182367208514403182765534867201
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111111000000
100000000111111111110000
011111111000000000000000
011111111000000000001111
011111111000000000001001
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
000000011000000000001001
000000011000000000001001
000000001000000000000000
000000001000000000000000
000000000011000011000000
000000000010000000000000
000000000010000000000000
000000000011000011000000
Different CFs set within combinatorial structure:
CF 1: 012345678120458736365271084453782160534867201608514327271036845847603512786120453
CF 2: 012345678120487563536728410681572304403816752257034186745603821874160235368251047
CF 3: 012345678120487563536728410681532704407816352253074186745603821874160235368251047
CF 4: 012345678120486735754163280273810564548672013836521407601758342367204851485037126
CF 5: 012345678127608534865473012653782140278014365401536827536827401340251786784160253
...
CF 8: 012345678120478536536827401671532840408716325253084167845603712367251084784160253
CF 9: 012345678123704865354867210807653124485210736631478502740526381276081453568132047
CF 10: 012345678123704865354867210805673124487210536631458702740526381276081453568132047
CF 11: 012345678120486735754163280273810564508672413836521047641758302367204851485037126
CF 12: 012345678120487536563728410381562704407816352256074183745603821874130265638251047
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 12, 12]
Multiset of vertices powers:
{1:4, 4:4, 8:12, 10:2, 12:2}
395. Structure 24N80M24C
DLSs within combinatorial structure:
DLS 1: 012345678123786540468057321245630817530472186387261054701528463856104732674813205
DLS 2: 012345678587602134831274056350416782648750321263187540174863205425031867706528413
DLS 3: 012345678435761820246087531628150347380674152857412063703528416561203784174836205
DLS 4: 012345678465731820243087561628150347380674152857412036706528413531206784174863205
DLS 5: 012345678463781520248057361625130847530674182387412056706528413851206734174863205
...
DLS 20: 012345678580612734837204156351476082643157820268031547174863205425780361706528413
DLS 21: 012345678587204136631478052350612784423750861846137520174863205265081347708526413
DLS 22: 012345678580214736637408152351672084423157860846031527174863205265780341708526413
DLS 23: 012345678823761540468057321245130867530472186387216054706528413651804732174683205
DLS 24: 012345678823761540468057321245130867531472086387206154706528413650814732174683205
Adjacency matrix:
010000000000000000000000
101111111111100000000000
010000000000010000000000
010000000000011111110000
010000000000011111110000
010000000000010000000000
010000000000011111110000
010000000000011111110000
010000000000011111110000
010000000000011111111100
010000000000000000000000
010000000000011111110000
010000000000011111111100
001111111101100000000000
000110111101100000000011
000110111101100000000000
000110111101100000000000
000110111101100000000011
000110111101100000000000
000110111101100000000000
000000000100100000000011
000000000100100000000000
000000000000001001001000
000000000000001001001000
Different CFs set within combinatorial structure:
CF 1: 012345678123786540468057321245630817530472186387261054701528463856104732674813205
CF 2: 012345678120468753275603481631870524756014832804237165487526310563182047348751206
CF 3: 012345678120456837738012465347560182584673021865124703476281350653807214201738546
CF 4: 012345678120456837738012465347560182564873021685124703476281350853607214201738546
CF 5: 012345678123784560465127083634852107807236451780461325251608734376510842548073216
...
CF 20: 012345678120678453247053186876102534758234061435786210364510827501867342683421705
CF 21: 012345678123480567806723415430872156748651023657014382281536704574168230365207841
CF 22: 012345678120453867375816240458760321204637185763128504637081452846572013581204736
CF 23: 012345678120463857458702361531624780875016243684237105346870512207581436763158024
CF 24: 012345678120567834738204561687452103873610245351726480546078312204183756465831027
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 3, 3, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 12]
Multiset of vertices powers:
{1:2, 2:3, 3:2, 4:1, 8:10, 10:5, 12:1}
396. Structure 24N81M12C
DLSs within combinatorial structure:
DLS 1: 012345678123480756834756201576123480648072315357618042261804537705231864480567123
DLS 2: 012345678231804567786231450804567213375618042648072135153480726420756381567123804
DLS 3: 012345678231804567786231450804567231375618042648072315153480726420756183567123804
DLS 4: 012345678261804537783261450804537261375618042648072315156480723420753186537126804
DLS 5: 012345678123480756834756201756123480648072315375618042261804537507231864480567123
...
DLS 20: 012345678231857064486231750807564213370618542648072135153780426725406381564123807
DLS 21: 012345678231854067786231450804567213370618542648072135153480726425706381567123804
DLS 22: 012345678231807564486231750807564231375618042648072315153780426720456183564123807
DLS 23: 012345678231857064486231750807564231370618542648072315153780426725406183564123807
DLS 24: 012345678231854067786231450804567231370618542648072315153480726425706183567123804
Adjacency matrix:
011100000000000000000000
100011000000000000000000
100011111111111000000000
100011111111111000000000
011100000000000111111111
011100000000000111111111
001100000000000000000000
001100000000000111000111
001100000000000000000000
001100000000000111000111
001100000000000111000111
001100000000000111000111
001100000000000000000000
001100000000000111000111
001100000000000111000111
000011010111011000000000
000011010111011000000000
000011010111011000000000
000011000000000000000000
000011000000000000000000
000011000000000000000000
000011010111011000000000
000011010111011000000000
000011010111011000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123480756834756201576123480648072315357618042261804537705231864480567123
CF 2: 012345678123480756834567201256103487648072315375618042761824530507231864480756123
CF 3: 012345678120687435678210543865432701543876012254103867736524180301768254487051326
CF 4: 012345678123476850708152436467581302640837215581064723356720184874203561235618047
CF 5: 012345678123486750708152436467531802640873215581064327356207184834720561275618043
...
CF 8: 012345678123486750708153426467531802640872315581064237356207184834720561275618043
CF 9: 012345678123760845468071253231487560674852301850136724746503182507218436385624017
CF 10: 012345678123476850708162435467581302540837216681054723356720184874203561235618047
CF 11: 012345678123486750708162435467531802540873216681054327356207184834720561275618043
CF 12: 012345678120768453345210786706821534678534201457086312834607125563172840281453067
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12]
Multiset of vertices powers:
{2:6, 3:2, 8:12, 12:4}
397. Structure 24N82M12C
DLSs within combinatorial structure:
DLS 1: 012345678120486753783601245871520364205864137648137520367058412534712086456273801
DLS 2: 012345678348560127456278301130756482824013756567482013275134860601827534783601245
DLS 3: 012345678348560127456278301130786452524013786867452013275134860601827534783601245
DLS 4: 012345678124786053783601245341527860275860134608134527860453712537012486456278301
DLS 5: 012345678824756013783601245345827160278160534601534827560413782137082456456278301
...
DLS 20: 012345678248530167456278301160752483834016752527483016675124830301867524783601245
DLS 21: 012345678548230167426578301160752483834016752257483016675124830301867524783601245
DLS 22: 012345678578234160426578301167452083830716452254083716605127834341860527783601245
DLS 23: 012345678120486753783601245371520864205864137648137502867253410534712086456078321
DLS 24: 012345678820456713783601245375820164208164537641537802567213480134782056456078321
Adjacency matrix:
011000000000000000000000
100111111111000000000000
100111111111000000000000
011000000000111111110000
011000000000111001110000
011000000000111001110000
011000000000111001111100
011000000000000100000000
011000000000111111110000
011000000000111001110000
011000000000111001110000
011000000000111001111100
000111101111000000000000
000111101111000000000000
000111101111000000000011
000100011000000000000000
000100001000000000000000
000111101111000000000000
000111101111000000000011
000111101111000000000000
000000100001000000000000
000000100001000000000001
000000000000001000100000
000000000000001000100100
Different CFs set within combinatorial structure:
CF 1: 012345678120486753783601245871520364205864137648137520367058412534712086456273801
CF 2: 012345678120463857468750321537604182875016243681237405346872510204581736753128064
CF 3: 012345678120473865734856021853607214605138742476281350381724506247560183568012437
CF 4: 012345678123487560485761023760124385807632451634258107251806734376510842548073216
CF 5: 012345678120486753783601245371520864205864137648137520867053412534712086456278301
...
CF 8: 012345678120568743458173206845607132674230581736051824301782465267814350583426017
CF 9: 012345678120486735473810526836521407754163280685037142367204851548672013201758364
CF 10: 012345678120487365765124083483761520257836401601258734834602157376510842548073216
CF 11: 012345678120486753783601245371520864205864137648137502867253410534712086456078321
CF 12: 012345678120487365765124083483761502207836451651208734834650127376512840548073216
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 3, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{2:4, 3:4, 8:8, 10:8}
398. Structure 24N84M12C
DLSs within combinatorial structure:
DLS 1: 012345678123486750784561032570812346245670813658123407306758124837204561461037285
DLS 2: 012345678837201564658423701245670813570812346781564032164037285423786150306158427
DLS 3: 012345678834201567658723401245670813570812346481567032167034285723486150306158724
DLS 4: 012345678831207564658423701245670813570812346187564032764031285423786150306158427
DLS 5: 012345678831204567658723401245670813570812346184567032467031285723486150306158724
...
DLS 20: 012345678126483750784521063570812346345670812258136407603758124867204531431067285
DLS 21: 012345678831507264528463701245670813670812345187254036764031582453786120306128457
DLS 22: 012345678831504267528763401245670813670812345184257036467031582753486120306128754
DLS 23: 012345678837501264528463701245670813670812345781254036164037582453786120306128457
DLS 24: 012345678834501267528763401245670813670812345481257036167034582753486120306128754
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111111110000
100000000111111111110000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000001111
011111111000000000001111
000000011000000000000000
000000011000000000000000
000000011000000000001100
000000011000000000001100
000000000000001100110000
000000000000001100110000
000000000000001100000000
000000000000001100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123486750784561032570812346245670813658123407306758124837204561461037285
CF 2: 012345678127638540865470321630782154253814706471506832586023417304167285748251063
CF 3: 012345678123786450461037285784561032245670813306458127570812346837204561658123704
CF 4: 012345678127408536764150283536827401608512347845673012380261754253784160471036825
CF 5: 012345678123804756306758421847536012560172384784061235451623807638217540275480163
...
CF 8: 012345678120478536506837421784160253367251084845603712431726805678512340253084167
CF 9: 012345678123804756306758421847536012580172364764081235451623807638217540275460183
CF 10: 012345678120458736247683510536827401384160257765231084851704362608572143473016825
CF 11: 012345678124708536467150283536824701678512340845673012380261457253087164701436825
CF 12: 012345678120478536506837421764180253387251064845603712431726805678512340253064187
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12]
Multiset of vertices powers:
{2:4, 4:4, 8:12, 12:4}
399. Structure 24N84M24C
DLSs within combinatorial structure:
DLS 1: 012345678123087546235416087468751320704863215681204753547130862850672134376528401
DLS 2: 012345678687432015321580764830674152156728403745013826473206581268157340504861237
DLS 3: 012345678685432017321780564830674152176528403547013826453206781268157340704861235
DLS 4: 012345678687412035123580764830674152356728401745031826471206583268157340504863217
DLS 5: 012345678685412037123780564830674152376528401547031826451206783268157340704863215
...
DLS 20: 012345678143087526435216087268751340704863215681402753527130864850674132376528401
DLS 21: 012345678123057846238416705465781320504863217681274053740138562857602134376520481
DLS 22: 012345678143057826438216705265781340504863217681472053720138564857604132376520481
DLS 23: 012345678820157346281406735465730821504863217638274150743081562357612084176528403
DLS 24: 012345678840157326481206735265730841504863217638472150723081564357614082176528403
Adjacency matrix:
011111111111111110000000
100000000000000001110000
100000000000000001111100
100000000000000001110000
100000000000000001111111
100000000000000001110000
100000000000000001111100
100000000000000001110000
100000000000000001111100
100000000000000001110000
100000000000000001111100
100000000000000001110000
100000000000000001111111
100000000000000001110000
100000000000000001111100
100000000000000001110000
100000000000000001111100
011111111111111110000000
011111111111111110000000
011111111111111110000000
001010101010101010000000
001010101010101010000000
000010000000100000000000
000010000000100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123087546235416087468751320704863215681204753547130862850672134376528401
CF 2: 012345678123487560756138402507861234648072315361524087480753126834206751275610843
CF 3: 012345678120576834357461082536827401784150263875634120461082357648203715203718546
CF 4: 012345678123487560756130482507861234648072315361524807480753126834206751275618043
CF 5: 012345678120576834357461082536827401784150263805634127461782350648203715273018546
...
CF 20: 012345678123784056854632107401856732648073215765421380380167524537208461276510843
CF 21: 012345678123057846238416705465781320504863217681274053740138562857602134376520481
CF 22: 012345678120487563683751024756124380345670812407268135861532407234806751578013246
CF 23: 012345678123478065857610243234507186681234507705186432460723851346852710578061324
CF 24: 012345678123478065857610243234587106601234587785106432460723851346852710578061324
Ascending sorted vector of vertices powers:
[2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 16, 16, 16, 16]
Multiset of vertices powers:
{2:2, 4:8, 6:6, 8:4, 16:4}
400. Structure 24N96M12C
DLSs within combinatorial structure:
DLS 1: 012345678123876540365102784684720315708534126540618237831067452457281063276453801
DLS 2: 012345678431068725758621430346207851167453082274186503523870164805712346680534217
DLS 3: 012345678431068725658721430347206851176453082264187503523870164805612347780534216
DLS 4: 012345678341068725758621340436207851167453082273186504524870163805712436680534217
DLS 5: 012345678341068725658721340437206851176453082263187504524870163805612437780534216
...
DLS 20: 012345678123807546305162784684710325876534210540628137731086452458271063267453801
DLS 21: 012345678436028715258761430347186052621453807164207583573810264805672341780534126
DLS 22: 012345678346028715258761340437186052621453807163207584574810263805672431780534126
DLS 23: 012345678436028715258761430347106852621453087164287503573810264805672341780534126
DLS 24: 012345678346028715258761340437106852621453087163287504574810263805672431780534126
Adjacency matrix:
011111111000000000000000
100000000111111111110000
100000000110101101100000
100000000111111111110000
100000000110101101100000
100000000111111111110000
100000000110101101100000
100000000111111111110000
100000000110101101100000
011111111000000000000000
011111111000000000001111
010101010000000000000000
011111111000000000001111
010101010000000000000000
011111111000000000000000
011111111000000000001111
010101010000000000000000
011111111000000000000000
011111111000000000001111
010101010000000000000000
000000000010100100100000
000000000010100100100000
000000000010100100100000
000000000010100100100000
Different CFs set within combinatorial structure:
CF 1: 012345678123876540365102784684720315708534126540618237831067452457281063276453801
CF 2: 012345678123078546478563210251486037736250184680137452847601325504812763365724801
CF 3: 012345678123078564478563210251684037734250186680137452867401325506812743345726801
CF 4: 012345678123078546478563210251436087786250134630187452847601325504812763365724801
CF 5: 012345678123078564478563210251634087784250136630187452867401325506812743345726801
...
CF 8: 012345678123876540365182704684720315708534126540618237831067452457201863276453081
CF 9: 012345678123807456304162785685720314876534120450618237731086542548271063267453801
CF 10: 012345678123807546305162784684720315876534120540618237731086452458271063267453801
CF 11: 012345678123708564508162743475620381347251806860473152681037425734586210256814037
CF 12: 012345678123708564508132746475620381647251803860473152381067425734586210256814037
Ascending sorted vector of vertices powers:
[4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12]
Multiset of vertices powers:
{4:8, 8:8, 12:8}
401. Structure 24N112M7C
DLSs within combinatorial structure:
DLS 1: 012345678123867450256430187840153762435678021387204516764521803501786234678012345
DLS 2: 012345678834102567107854236621587340763210854278436105580763421456021783345678012
DLS 3: 012345678834102567107854236621537840768210354273486105580763421456021783345678012
DLS 4: 012345678834120567107854236621587340763012854278436105580763421456201783345678012
DLS 5: 012345678834120567107854236621537840768012354273486105580763421456201783345678012
...
DLS 20: 012345678324867150456210387845102763230678514187453026761534802503786241678021435
DLS 21: 012345678837120465105876234521687340473012856268534107680453721746201583354768012
DLS 22: 012345678837120465105876234521637840478012356263584107680453721746201583354768012
DLS 23: 012345678837102465105876234521687340473210856268534107680453721746021583354768012
DLS 24: 012345678837102465105876234521637840478210356263584107680453721746021583354768012
Adjacency matrix:
011111111000000000000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111100000000
100000000111111111110000
100000000111111111110000
100000000111111111110000
100000000111111111110000
011111111000000000000000
011111111000000000000000
011111111000000000001111
011111111000000000001111
011111111000000000000000
011111111000000000001111
011111111000000000001111
000001111000000000001111
000001111000000000001111
000001111000000000001111
000001111000000000001111
000000000001101111110000
000000000001101111110000
000000000001101111110000
000000000001101111110000
Different CFs set within combinatorial structure:
CF 1: 012345678123867450256430187840153762435678021387204516764521803501786234678012345
CF 2: 012345678123687450256430187845103762430876521387254016764521803501768234678012345
CF 3: 012345678123687450256430187840153762435876021387204516764521803501768234678012345
CF 4: 012345678123867450256430187845103762430678521387254016764521803501786234678012345
CF 5: 012345678123867450764528103847603521385176042630251784256430817508714236471082365
CF 6: 012345678123867450764528103847653021380176542635201784256430817508714236471082365
CF 7: 012345678123867450764538102847603521285176043630251784356420817508714236471082365
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12]
Multiset of vertices powers:
{8:16, 12:8}
402. Structure 24N112M12C
DLSs within combinatorial structure:
DLS 1: 012345678120687435586403127437152086345876210863524701754031862201768354678210543
DLS 2: 012345678834120567167834205208567134573012846781456320620783451456201783345678012
DLS 3: 012345678354120867167584203208637154876012345781463520620758431435201786543876012
DLS 4: 012345678684120357137854206203587164876012543751436820520763481468201735345678012
DLS 5: 012345678837120564164837205208564137573012846481756320620483751756201483345678012
...
DLS 20: 012345678420687135586103427137452086345876210863521704751034862204768351678210543
DLS 21: 012345678135867402286430157427103586543678210860254731704521863351786024678012345
DLS 22: 012345678135687402286430157427103586543876210860254731704521863351768024678012345
DLS 23: 012345678435867102286130457127403586543678210860251734701524863354786021678012345
DLS 24: 012345678435687102286130457127403586543876210860251734701524863354768021678012345
Adjacency matrix:
011111111111100000000000
100000000000011111110000
100000000000011111111111
100000000000000001111111
100000000000011111110000
100000000000011111111111
100000000000000001111111
100000000000011111110000
100000000000011111111111
100000000000000001111111
100000000000011111110000
100000000000011111111111
100000000000000001111111
011011011011000000000000
011011011011000000000000
011011011011000000000000
011011011011000000000000
011111111111100000000000
011111111111100000000000
011111111111100000000000
001101101101100000000000
001101101101100000000000
001101101101100000000000
001101101101100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120687435586403127437152086345876210863524701754031862201768354678210543
CF 2: 012345678123687450256430187847153062430876521385204716764521803501768234678012345
CF 3: 012345678120768453386504127865423701543876210457231086734150862201687534678012345
CF 4: 012345678123768450256430187840153762435876021387204516764521803501687234678012345
CF 5: 012345678123584706248607315457132860384760251765413082831076524670258143506821437
...
CF 8: 012345678123687450386450127457123086240876513865234701734501862501768234678012345
CF 9: 012345678123486705451607283706854132648572310584123067835760421267031854370218546
CF 10: 012345678123584706248670315457132860384067251765413082831706524670258143506821437
CF 11: 012345678123458706248076351765134082834760215457213860381607524670582143506821437
CF 12: 012345678120458736536782401684130257845673012708564123451827360367201584273016845
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12]
Multiset of vertices powers:
{8:16, 12:8}
403. Structure 24N128M15C
DLSs within combinatorial structure:
DLS 1: 012345678231078546657483102583167420864752031740236815476810253105624387328501764
DLS 2: 012345678548236710285071463327610584176824305431758026863507142750462831604183257
DLS 3: 012345678147286035236871450728530164375124806403768521651407382864052713580613247
DLS 4: 012345678157286034236871540728430165375124806503768421641507382864052713480613257
DLS 5: 012345678147286035276831450328570164735124806403768521651407382864052713580613247
...
DLS 20: 012345678431708526857263104563187240684052731720436815276810453105624387348571062
DLS 21: 012345678231078546857463102563187420684752013740216835476830251105624387328501764
DLS 22: 012345678431078526857263104563187240684752013720416835276830451105624387348501762
DLS 23: 012345678231708546857463102563187420684052713740216835476830251105624387328571064
DLS 24: 012345678431708526857263104563187240684052713720416835276830451105624387348571062
Adjacency matrix:
011111111000000000000000
100000000111111111111111
100000000111111111111111
100000000111111111111111
100000000111111111111111
100000000111111111111111
100000000111111111111111
100000000111111111111111
100000000111111111111111
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
011111111000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678231078546657483102583167420864752031740236815476810253105624387328501764
CF 2: 012345678123608547268730154837426015684051723501287436750164382475813260346572801
CF 3: 012345678120468357857126034364581720275630481508274163436712805643807512781053246
CF 4: 012345678120468357257186034364521780875630421508274163436712805643807512781053246
CF 5: 012345678120436857473561280345780162867214305201658734684107523536872041758023416
...
CF 11: 012345678231078546658714032586423701740851263473206815307682154865137420124560387
CF 12: 012345678231078546657483102583167420864752013740216835476830251105624387328501764
CF 13: 012345678231078546857463120563187402684752013470216835746830251105624387328501764
CF 14: 012345678231078546657483120583167402864752031470236815746810253105624387328501764
CF 15: 012345678231078546658714032586423701743851260470236815307682154865107423124560387
Ascending sorted vector of vertices powers:
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16]
Multiset of vertices powers:
{8:16, 16:8}
404. Structure 25N58M25C
DLSs within combinatorial structure:
DLS 1: 012345678120487365308561742547632081674158230786023154851276403235704816463810527
DLS 2: 012345678453672801261038457725863140538726014807514263386401725674180532140257386
DLS 3: 012345678453678201861032457725863140538726014207514863386401725674180532140257386
DLS 4: 012345678453672801261038457720863145538726014807514263386451720674180532145207386
DLS 5: 012345678453678201861032457720863145538726014207514863386451720674180532145207386
...
DLS 21: 012345678463578201851032467726853140538726014207614853385401726674180532140267385
DLS 22: 012345678463572801251038467720853146538726014807614253385461720674180532146207385
DLS 23: 012345678463578201851032467720853146538726014207614853385461720674180532146207385
DLS 24: 012345678453678201561032487720863145835726014207514863386451720674180532148207356
DLS 25: 012345678380461725607583142843217056764152830175026384256738401538604217421870563
Adjacency matrix:
0111100000000000000000000
1000011111111100000000000
1000011111111111111000000
1000011111111100000000000
1000011111111100000000000
0111100000000000000000000
0111100000000000000000000
0111100000000000000111100
0111100000000000000000000
0111100000000000000000000
0111100000000000000000010
0111100000000000000111110
0111100000000000000000010
0111100000000000000000010
0010000000000000000000000
0010000000000000000000000
0010000000000000000000000
0010000000000000000000000
0010000000000000000000000
0000000100010000000000001
0000000100010000000000000
0000000100010000000000000
0000000100010000000000000
0000000000111100000000000
0000000000000000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678120487365308561742547632081674158230786023154851276403235704816463810527
CF 2: 012345678120478536586123407374861052743650281865207314437582160201736845658014723
CF 3: 012345678120478536734850261685107423473561082856023714201736845347682150568214307
CF 4: 012345678120478536374860251586107423437651082865023714201736845743582160658214307
CF 5: 012345678120478536374850261685107423437561082856023714201736845743682150568214307
...
CF 21: 012345678120478536437850261685104723743561082856023417201736845374682150568217304
CF 22: 012345678120478536347860251586104723734651082865023417201736845473582160658217304
CF 23: 012345678120478536347850261685104723734561082856023417201736845473682150568217304
CF 24: 012345678120458736354870261685107423437561082876023514201736845743682150568214307
CF 25: 012345678120567834548236017386714250467058123735601482801472365673820541254183706
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 8, 9, 10, 10, 10, 15]
Multiset of vertices powers:
{1:6, 2:3, 3:1, 4:6, 5:3, 8:1, 9:1, 10:3, 15:1}
405. Structure 25N72M25C
DLSs within combinatorial structure:
DLS 1: 012345678120478536358614027573182460647051382834706215281563704765230841406827153
DLS 2: 012345678835706241647051382761230854358614027420578136506827413173482560284163705
DLS 3: 012345678834706251647051382761230845358614027520478136406827513173582460285163704
DLS 4: 012345678478163520256814037583427106640751382301682745724530861835076214167208453
DLS 5: 012345678478163520256814037583427106647051382301682745724530861835706214160278453
...
DLS 21: 012345678845706213637051482764230851358164027120578364503827146471682530286413705
DLS 22: 012345678371864520256183047583427106640751382408612735724530861835076214167208453
DLS 23: 012345678378164520256813047583427106640751382401682735724530861835076214167208453
DLS 24: 012345678371864520256183047583427106647051382408612735724530861835706214160278453
DLS 25: 012345678378164520256813047583427106647051382401682735724530861835706214160278453
Adjacency matrix:
0110000000000000000000000
1001111111111111000000000
1001111110011111000000000
0110000000000000111110000
0110000000000000111110000
0110000000000000000000000
0110000000000000000000000
0110000000000000000000000
0110000000000000000000000
0100000000000000111110000
0100000000000000111110000
0110000000000000111110000
0110000000000000111110000
0110000000000000000000000
0110000000000000000000000
0110000000000000000000000
0001100001111000000001111
0001100001111000000001111
0001100001111000000000000
0001100001111000000001111
0001100001111000000001111
0000000000000000110110000
0000000000000000110110000
0000000000000000110110000
0000000000000000110110000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536358614027573182460647051382834706215281563704765230841406827153
CF 2: 012345678123758064358467120407613852284570316631284705760821543845106237576032481
CF 3: 012345678123657804684510732805723461570168243368401527741286350457032186236874015
CF 4: 012345678120478536378614025503182467647051382254736810831260754765803241486527103
CF 5: 012345678143578260758026143527604831680132457364781502835260714401857326276413085
...
CF 21: 012345678123807546765128034604782153286530417358614720431276805870451362547063281
CF 22: 012345678120476853368514027675182430547061382804753216251830764736208541483627105
CF 23: 012345678120478536378614025503182467647051382854736210231860754765203841486527103
CF 24: 012345678143576820728630154564187203230851467687402315856023741401768532375214086
CF 25: 012345678143572860356807421825763014681420537760158342237684105408231756574016283
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 7, 7, 7, 7, 10, 10, 10, 10, 12, 14]
Multiset of vertices powers:
{2:8, 4:4, 6:3, 7:4, 10:4, 12:1, 14:1}
406. Structure 25N75M25C
DLSs within combinatorial structure:
DLS 1: 012345678120457863436278510765824301687130425548061237301582746874613052253706184
DLS 2: 012345678384106752873610245207453186728561034651782403460837521546278310135024867
DLS 3: 012345678730564821546278310425831067301452786168027534284706153873610245657183402
DLS 4: 012345678730564821546278310425831067381452706168027534204786153873610245657103482
DLS 5: 012345678130567824546278310725834061307152486468021537281406753873610245654783102
...
DLS 21: 012345678384601752873160245207453186738516024156782403460827531541278360625034817
DLS 22: 012345678120537846564278310745826031607153482438061527381602754873410265256784103
DLS 23: 012345678120537846564278310745826031687153402438061527301682754873410265256704183
DLS 24: 012345678130567824546278310705834261327150486468021537281406753873612045654783102
DLS 25: 012345678730564821546278310405831267321450786168027534284706153873612045657183402
Adjacency matrix:
0100000000000000000000000
1011111111000000000000000
0100000000111111100000000
0100000000111111100000000
0100000000111111100000000
0100000000111111100000000
0100000000111111100000000
0100000000111111100000000
0100000000111111111110000
0100000000111111100000000
0011111111000000000000000
0011111111000000000000000
0011111111000000000001100
0011111111000000000001100
0011111111000000000000000
0011111111000000000000011
0011111111000000000000000
0000000010000000000000000
0000000010000000000000000
0000000010000000000000000
0000000010000000000000000
0000000000001100000000000
0000000000001100000000000
0000000000000001000000000
0000000000000001000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120457863436278510765824301687130425548061237301582746874613052253706184
CF 2: 012345678120483756783601245671530824205864137348127560867052413534716082456278301
CF 3: 012345678120476835538012467453687210764853021876201354241530786307168542685724103
CF 4: 012345678120487365465721083783164520254836107637208451801652734376510842548073216
CF 5: 012345678123487560785164023460721385801632754657208431234856107376510842548073216
...
CF 21: 012345678120476835358012467435687210764853021876201354281534706503768142647120583
CF 22: 012345678120478536463852710356781402784560321638014257875203164541627083207136845
CF 23: 012345678120483765738056421853607214675134802486271350241760583307528146564812037
CF 24: 012345678123078546876203154461582730748136025304751862580627413257460381635814207
CF 25: 012345678120476835538012467453687210864753021786201354241530786307168542675824103
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 12]
Multiset of vertices powers:
{1:7, 2:2, 8:11, 9:1, 10:3, 12:1}
407. Structure 25N76M25C
DLSs within combinatorial structure:
DLS 1: 012345678123867450504786231465130782246578013780453126351624807837201564678012345
DLS 2: 012345678537120864756201483204867531678012345861534207180453726423786150345678012
DLS 3: 012345678534120867456201783207864531678012345861537204180753426723486150345678012
DLS 4: 012345678423867150501786234156420783345678012780153426264531807837204561678012345
DLS 5: 012345678423687150501768234156420783345876012780153426264531807837204561678012345
...
DLS 21: 012345678123867450504786231456130782240678513785403126361524807837251064678012345
DLS 22: 012345678123687450504768231456130782240876513785403126361524807837251064678012345
DLS 23: 012345678537102864756021483204867531678210345861534207180453726423786150345678012
DLS 24: 012345678534102867456021783207864531678210345861537204180753426723486150345678012
DLS 25: 012345678534120867456201783207864531678412305861537240180753426723086154345678012
Adjacency matrix:
0110000000000000000000000
1001111111111111111111000
1001111111111111111111000
0110000000000000000000111
0110000000000000000000110
0110000000000000000000000
0110000000000000000000110
0110000000000000000000110
0110000000000000000000000
0110000000000000000000111
0110000000000000000000110
0110000000000000000000000
0110000000000000000000110
0110000000000000000000110
0110000000000000000000111
0110000000000000000000110
0110000000000000000000111
0110000000000000000000110
0110000000000000000000110
0110000000000000000000110
0110000000000000000000110
0110000000000000000000110
0001101101101111111111000
0001101101101111111111000
0001000001000010100000000
Different CFs set within combinatorial structure:
CF 1: 012345678123867450504786231465130782246578013780453126351624807837201564678012345
CF 2: 012345678124637805436581720875103264307256481650478132781024356568712043243860517
CF 3: 012345678120486735401738562763850124658274013574163280836521407347602851285017346
CF 4: 012345678123784065801637452785461320546072813634258701460123587257806134378510246
CF 5: 012345678123784065801627453785461320546073812634258701460132587257806134378510246
...
CF 21: 012345678123058746601783254486527103847631520754106832370862415265470381538214067
CF 22: 012345678123058746601783254486507123847631502754126830370862415265470381538214067
CF 23: 012345678123457806851206734380574162574063281706128453465781320637812045248630517
CF 24: 012345678120486735401738562753860124568274013674153280836521407347602851285017346
CF 25: 012345678120468735401736582763850124658274013574183260836521407347602851285017346
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 16, 16, 20, 20]
Multiset of vertices powers:
{2:4, 4:13, 5:4, 16:2, 20:2}
408. Structure 26N51M13C
DLSs within combinatorial structure:
DLS 1: 012345678120478536685107423734851260473562081856213704347680152201736845568024317
DLS 2: 012345678685732041374286510250613487106827354437051826821504763568470132743168205
DLS 3: 012345678685732041374286510258613407106827354437051826821504763560478132743160285
DLS 4: 012345678685732041437286510250617384106824753743051826821503467568470132374168205
DLS 5: 012345678685732041437286510258617304106824753743051826821503467560478132374160285
...
DLS 22: 012345678127863450658214703301476825586032147865107234430728516743581062274650381
DLS 23: 012345678427863150658214703301476825586032417865107234130728546743581062274650381
DLS 24: 012345678137862450658214703201476835586023147865107324420738516743581062374650281
DLS 25: 012345678437862150658214703203476815586021437865107324120738546741583062374650281
DLS 26: 012345678145078326863157042720831564374560281608412735257684103431726850586203417
Adjacency matrix:
01111000000000000000000000
10000111111100000000000000
10000111111100000000000000
10000100110000000000000000
10000100110000000000000000
01111000000010000000000000
01100000000000000000000000
01100000000000000000000000
01111000000000000000000000
01111000000001000000000000
01100000000000000000000000
01100000000000000000000000
00000100000000111100000000
00000000010000000000000000
00000000000010000011100000
00000000000010000011100000
00000000000010000011111110
00000000000010000011111110
00000000000000111100000000
00000000000000111100000000
00000000000000111100000001
00000000000000001100000000
00000000000000001100000000
00000000000000001100000000
00000000000000001100000000
00000000000000000000100000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536685107423734851260473562081856213704347680152201736845568024317
CF 2: 012345678230658714748160352403512867186273045675084231354726180867401523521837406
CF 3: 012345678230658714748160352803512467186273045675084231354726180467801523521437806
CF 4: 012345678127568430385712064476801523503276841730654182864127305658430217241083756
CF 5: 012345678127068435385712064476801523503276841730654182864127350658430217241583706
...
CF 9: 012345678120478536685107423734851062473560281856213704347682150201736845568024317
CF 10: 012345678120478536865107423734851062473560281658213704347682150201736845586024317
CF 11: 012345678120486357874561203756103482348672015635028741201837564567214830483750126
CF 12: 012345678120483756864531207753106482348672015675028341201867534537214860486750123
CF 13: 012345678123708564846532107587164032435870216761253480270416853658027341304681725
Ascending sorted vector of vertices powers:
[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 8, 8, 8, 8]
Multiset of vertices powers:
{1:2, 2:8, 4:8, 5:4, 8:4}
409. Structure 26N54M26C
DLSs within combinatorial structure:
DLS 1: 012345678123458067458761320801634752287510436364287105730126584675803241546072813
DLS 2: 012345678367281450504637182758160324135426807426708513283054761841572036670813245
DLS 3: 012345678637281450504637182758160324165423807423708516286054731841572063370816245
DLS 4: 012345678637281450504673182758160324165427803423708516286054731841532067370816245
DLS 5: 012345678367281450504637182758160324135426807426758013283504761841072536670813245
...
DLS 22: 012345678637281405164037582785106324506423817423758061251864730840672153378510246
DLS 23: 012345678637281405864037512758106324506423187423758061281564730140672853375810246
DLS 24: 012345678637281405864037512785106324506423187423758061251864730140672853378510246
DLS 25: 012345678637281405804637512758106324560423187423758061281564730146072853375810246
DLS 26: 012345678637281405804637512785106324560423187423758061251864730146072853378510246
Adjacency matrix:
01111111111000000000000000
10000000000100000000000000
10000000000111000000000000
10000000000111000000000000
10000000000100000000000000
10000000000101000000000000
10000000000101000000000000
10000000000101000000000000
10000000000101000000000000
10000000000101000000000000
10000000000101000000000000
01111111111000111111111111
00110000000000000000000000
00110111111000111111111111
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
00000000000101000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678123458067458761320801634752287510436364287105730126584675803241546072813
CF 2: 012345678123857460758026134547602813680134257364781502835410726206578341471263085
CF 3: 012345678123857460758026134547602813680134257364781502835460721201578346476213085
CF 4: 012345678123478506258614730574103862647051283730286415801762354365827041486530127
CF 5: 012345678126578304837204561675182043248730156350416827581627430463051782704863215
...
CF 22: 012345678123478506486527130574182063268730451350614827835206714647051382701863245
CF 23: 012345678143572860758260134587604213620138457364781502835026741401857326276413085
CF 24: 012345678123487506476528130584172063268730451350614827835206714647051382701863245
CF 25: 012345678231684705647812530783501462458263017160758324504137286825076143376420851
CF 26: 012345678231684705687412530743501862458263017160758324504137286825076143376820451
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 10, 20, 22]
Multiset of vertices powers:
{2:15, 3:6, 4:2, 10:1, 20:1, 22:1}
410. Structure 26N60M26C
DLSs within combinatorial structure:
DLS 1: 012345678230657814467812350683574102375128046841036725506281437154760283728403561
DLS 2: 012345678567824130321706485730482561853670214278153046145067823406218357684531702
DLS 3: 012345678567821430328706514730452861143670285275183046854067123406218357681534702
DLS 4: 012345678567824130321760485730482561853076214278153046145607823406218357684531702
DLS 5: 012345678567821430328760514730452861143076285275183046854607123406218357681534702
...
DLS 22: 012345678567812340243706185720483561854670213478251036135067824306128457681534702
DLS 23: 012345678235607814374812506687530142546128037801476325453281760160754283728063451
DLS 24: 012345678275603814734812506683570142546128037801436725457281360160754283328067451
DLS 25: 012345678235607814374182506687530142546821037801476325453218760160754283728063451
DLS 26: 012345678275603814734182506683570142546821037801436725457218360160754283328067451
Adjacency matrix:
01111000000000000000000000
10000111111100000000000000
10000111111111111111000000
10000111111100000000000000
10000111111111111111000000
01111000000000000000000000
01111000000000000000000000
01111000000000000000000000
01111000000000000000110000
01111000000000000000000000
01111000000000000000110000
01111000000000000000000000
00101000000000000000000000
00101000000000000000000000
00101000000000000000000000
00101000000000000000000000
00101000000000000000000000
00101000000000000000000000
00101000000000000000000000
00101000000000000000000000
00000000101000000000001111
00000000101000000000001111
00000000000000000000110000
00000000000000000000110000
00000000000000000000110000
00000000000000000000110000
Different CFs set within combinatorial structure:
CF 1: 012345678230657814467812350683574102375128046841036725506281437154760283728403561
CF 2: 012345678231608745185237064840752316504861237763184502427016853658473120376520481
CF 3: 012345678231457860576082143827134056140576382653208714765820431408613527384761205
CF 4: 012345678230781564574826130625170843167453082351268407483602751846017325708534216
CF 5: 012345678231457860576082143827104356143576082650238714765820431408613527384761205
...
CF 22: 012345678123804756304781265275610843847536012638457120481263507560172384756028431
CF 23: 012345678123670845305481267847153026584267301476038512261504783658712430730826154
CF 24: 012345678123487056708536124637102845574863201281754360460278513845610732356021487
CF 25: 012345678123670845385401267847153026504267381476038512261584703658712430730826154
CF 26: 012345678124076853583104267476850312305762481857431026261583704638217540740628135
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 16, 16]
Multiset of vertices powers:
{2:12, 4:6, 6:4, 8:2, 16:2}
411. Structure 26N74M9C
DLSs within combinatorial structure:
DLS 1: 012345678120478536673584120401732865867253014258016347586127403345601782734860251
DLS 2: 012345678671584320365201784820473516253016847147658032734860251408732165586127403
DLS 3: 012345678671534820365201784820473516258016347147658032734860251403782165586127403
DLS 4: 012345678471582360325401786840673512653014827167258034734860251208736145586127403
DLS 5: 012345678471532860325401786840673512658014327167258034734860251203786145586127403
...
DLS 22: 012345678351064827637251084825403716208716345140678532764830251473582160586127403
DLS 23: 012345678651034827367281054825403716208716345140678532734560281473852160586127403
DLS 24: 012345678351064827637281054825403716208716345140678532764530281473852160586127403
DLS 25: 012345678371564820635201784820473516258016347147658032764830251403782165586127403
DLS 26: 012345678451032867327481056845603712608714325160278534734560281273856140586127403
Adjacency matrix:
01111111100000000000000000
10000000011111110000000000
10000000011111110000000000
10000000011111110000000000
10000000011111111111100000
10000000011111110000000000
10000000011111110000000000
10000000011111110000000000
10000000011111110000000000
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
01111111100000000000011111
01111111100000000000000000
00001000000000000000000000
00001000000000000000000000
00001000000000000000000000
00001000000000000000000000
00001000000000000000000000
00000000000000100000000000
00000000000000100000000000
00000000000000100000000000
00000000000000100000000000
00000000000000100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120478536673584120401732865867253014258016347586127403345601782734860251
CF 2: 012345678120468357507126483463582710286731045758014236341657802875203164634870521
CF 3: 012345678120468357207156483463582710586731042758014236341627805875203164634870521
CF 4: 012345678120486753831507264483750126207864531756123480564231807675018342348672015
CF 5: 012345678120486735683057124471830562568274013734561280856123407347602851205718346
CF 6: 012345678123458067345876210537681402601234785284507136760123854876012543458760321
CF 7: 012345678120468537738521064301782456647853102254106783586274310873610245465037821
CF 8: 012345678120478536673584102401732865867253014258016347586107423345621780734860251
CF 9: 012345678120487536683574102401732865867253014258016347576108423345621780734860251
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13]
Multiset of vertices powers:
{1:10, 8:14, 13:2}
412. Structure 26N74M13C
DLSs within combinatorial structure:
DLS 1: 012345678120468537738521064601782453247853106354106782586274310873610245465037821
DLS 2: 012345678651783402384102756460821537735064821128537064873610245546278310207456183
DLS 3: 012345678720861534438527061604182753281753406357406182546278310873610245165034827
DLS 4: 012345678120864537738521064601782453287453106354106782546278310873610245465037821
DLS 5: 012345678720861534438527061684102753201753486357486102546278310873610245165034827
...
DLS 22: 012345678684103752107452386368527014430861527725014863871630245546278130253786401
DLS 23: 012345678684103752107458326368527014430261587725014863871630245546872130253786401
DLS 24: 012345678681703452304152786468521037730864521125037864873610245546278310257486103
DLS 25: 012345678681703452304158726468521037730264581125037864873610245546872310257486103
DLS 26: 012345678681703452304152786468531027720864531135027864873610245546278310257486103
Adjacency matrix:
01000000000000000000000000
10111111111111000000000000
01000000000000111111111111
01000000000000110110100101
01000000000000110110100101
01000000000000110110100101
01000000000000110110100101
01000000000000110110100101
01000000000000000000000000
01000000000000000000000000
01000000000000000000000000
01000000000000110110100101
01000000000000110110100101
01000000000000000000000000
00111111000110000000000000
00111111000110000000000000
00100000000000000000000000
00111111000110000000000000
00111111000110000000000000
00100000000000000000000000
00111111000110000000000000
00100000000000000000000000
00100000000000000000000000
00111111000110000000000000
00100000000000000000000000
00111111000110000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120468537738521064601782453247853106354106782586274310873610245465037821
CF 2: 012345678120486753685730124754163280368274015471058362836521407547602831203817546
CF 3: 012345678120468357287156403463582710546731082758014236301627845875203164634870521
CF 4: 012345678120486753831507264453720186207864531786153420564231807675018342348672015
CF 5: 012345678120468357587126403463582710246731085758014236301657842875203164634870521
...
CF 9: 012345678120478536265830714431702865678514320853026147706283451347651082584167203
CF 10: 012345678120478536673584102408712365867253014251036847586107423345621780734860251
CF 11: 012345678120478536673584120408712365867253014251036847586127403345601782734860251
CF 12: 012345678120478536865203714401782365673514820258036147736820451347651082584167203
CF 13: 012345678120478536265803714401732865678514320853026147736280451347651082584167203
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13]
Multiset of vertices powers:
{1:10, 8:14, 13:2}
413. Structure 26N74M26C
DLSs within combinatorial structure:
DLS 1: 012345678120483567465721380657832401346570812783164025274608153801256734538017246
DLS 2: 012345678657832104234608751183764025578013246801256437725481360460127583346570812
DLS 3: 012345678425187360163724085607852134346570812780461523251638407834206751578013246
DLS 4: 012345678485167320123784065807256134346570812760421583651832407234608751578013246
DLS 5: 012345678125487360463721085607852431346570812780164523254638107831206754578013246
...
DLS 22: 012345678758236104634802751163724085587013246201658437875461320420187563346570812
DLS 23: 012345678637802154208654731175486320564013287451237806820761543743128065386570412
DLS 24: 012345678657832104238604751173486025564013287401257836825761340740128563386570412
DLS 25: 012345678185467320243781065807256431326570814760124583654832107431608752578013246
DLS 26: 012345678180467523245781360857236401326570814763124085634802157401658732578013246
Adjacency matrix:
01000000000000000000000000
10111111111110000000000000
01000000000001111111000000
01000000000001111111110000
01000000000001111111000000
01000000000001111111000000
01000000000001111111000000
01000000000001111111001100
01000000000001111111000000
01000000000001111111000000
01000000000000000000000000
01000000000000000000000000
01000000000000000000000000
00111111110000000000000000
00111111110000000000000000
00111111110000000000000011
00111111110000000000000000
00111111110000000000000000
00111111110000000000000000
00111111110000000000000000
00010000000000000000000000
00010000000000000000000000
00000001000000000000000000
00000001000000000000000000
00000000000000010000000000
00000000000000010000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120483567465721380657832401346570812783164025274608153801256734538017246
CF 2: 012345678120483756864501237486750123201837564753126480537264801345678012678012345
CF 3: 012345678120487563834760215603574182457812306281036754745603821576128430368251047
CF 4: 012345678120458736736820451603782145478516320251034867847603512365271084584167203
CF 5: 012345678120486753681750324734561280368274015473018562856123407547602831205837146
...
CF 22: 012345678120576843607824135781460352568237401435781260876103524354612087243058716
CF 23: 012345678120687453857103264436850721574236810285461307641078532368712045703524186
CF 24: 012345678123068754857123460238671045641537802570284136386402517405716283764850321
CF 25: 012345678120458736267803514401532867658714320873026145536287401345671082784160253
CF 26: 012345678120478536853726140401532867584167203678014325265803714347651082736280451
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 12]
Multiset of vertices powers:
{1:10, 8:12, 10:3, 12:1}
414. Structure 26N76M13C
DLSs within combinatorial structure:
DLS 1: 012345678120476853854610732673502481268731540547128306736084125301857264485263017
DLS 2: 012345678267158340508731264485263017120476853736084125341827506854610732673502481
DLS 3: 012345678567138240308721564485263017130476825756084132241857306824610753673502481
DLS 4: 012345678247158306568731240485263017124670853730486125301827564856014732673502481
DLS 5: 012345678547138206368721540485263017134670825750486132201857364826014753673502481
...
DLS 22: 012345678820436751754680312671502483263817540548723106136074825307158264485261037
DLS 23: 012345678824630751756084312671502483543817206208753164130476825367128540485261037
DLS 24: 012345678820436751754680312671502483563817240248753106136074825307128564485261037
DLS 25: 012345678247158306568731240485263017104672853730486125321807564856014732673520481
DLS 26: 012345678247158306568731240485263017804672153730416825321807564156084732673520481
Adjacency matrix:
01111111100000000000000000
10000000011111110000000000
10000000011111110000000000
10000000011111111111000000
10000000011111110000000000
10000000011111110000000000
10000000011111110000000000
10000000011111110000111100
10000000011111110000000000
01111111100000000000000000
01111111100000000000000011
01111111100000000000000000
01111111100000000000000011
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
00010000000000000000000000
00010000000000000000000000
00010000000000000000000000
00010000000000000000000000
00000001000000000000000000
00000001000000000000000000
00000001000000000000000000
00000001000000000000000000
00000000001010000000000000
00000000001010000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120476853854610732673502481268731540547128306736084125301857264485263017
CF 2: 012345678123708546864052713487561032748630251531276804375824160206417385650183427
CF 3: 012345678120487365763850214837521046654173820481036752205618437546702183378264501
CF 4: 012345678120486753563871402674152830758260341835724016281037564407613285346508127
CF 5: 012345678123780546537461082658103427864052713740638251481276305375824160206517834
...
CF 9: 012345678123476805586014723658703142347851260704238516231680457865127034470562381
CF 10: 012345678120476853854613702673502481268731540547128036736084125301857264485260317
CF 11: 012345678123476805865014723586703142347861250704238516231580467658127034470652381
CF 12: 012345678120476853854613702673502481568731240247158036736084125301827564485260317
CF 13: 012345678120486753763851402654172830578260341835724016281037564407613285346508127
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 12, 12]
Multiset of vertices powers:
{1:8, 2:2, 8:12, 10:2, 12:2}
415. Structure 26N76M26C
DLSs within combinatorial structure:
DLS 1: 012345678120476835368204751685730124401857362754163280836521407547682013273018546
DLS 2: 012345678481730526673058142128406753540672831836521407754163280205817364367284015
DLS 3: 012345678483750126675018342528406731340672815836521407754163280201837564167284053
DLS 4: 012345678281730564473058126148602753560274831836521407754163280605817342327486015
DLS 5: 012345678283750164475018326548602731360274815836521407754163280601837542127486053
...
DLS 22: 012345678138204765347682051205867143671058324754136280863521407520473816486710532
DLS 23: 012345678283750164875014326548602731360278415436521807754163280601837542127486053
DLS 24: 012345678283750164574018326458602731360274815836421507745163280601837452127586043
DLS 25: 012345678283750164574018326450682731368274015836421507745163280601837452127506843
DLS 26: 012345678281730564873054126148602753560278431436521807754163280605817342327486015
Adjacency matrix:
01111111100000000000000000
10000000011111110000000000
10000000011111110000000000
10000000011111110000000000
10000000011111111111000000
10000000011111110000000000
10000000011111110000000000
10000000011111110000000000
10000000011111110000110000
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
01111111100000000000001111
01111111100000000000000000
01111111100000000000000110
00001000000000000000000000
00001000000000000000000000
00001000000000000000000000
00001000000000000000000000
00000000100000000000000000
00000000100000000000000000
00000000000001000000000000
00000000000001010000000000
00000000000001010000000000
00000000000001000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835368204751685730124401857362754163280836521407547682013273018546
CF 2: 012345678120456837564873021381764502738012465607528143456287310873601254245130786
CF 3: 012345678123658704847062153231584067506731842784206315365817420470123586658470231
CF 4: 012345678120468537286137405873502164654870321738014256301756842465283710547621083
CF 5: 012345678120463857463758021581634702875016243604287135346872510237501486758120364
...
CF 22: 012345678120486753671850342836521407753164280384017526467203815548672031205738164
CF 23: 012345678120463857263758041581634702875016423604287135346872510437501286758120364
CF 24: 012345678120463857463758021581624703875016342604287135346872510237501486758130264
CF 25: 012345678120567834765834021607482153873610542381726405546278310254103786438051267
CF 26: 012345678120468537286137405673502184854670321738014256301756842465283710547821063
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 12, 12]
Multiset of vertices powers:
{1:8, 2:2, 8:12, 10:2, 12:2}
416. Structure 26N76M26C
DLSs within combinatorial structure:
DLS 1: 012345678123480756486753102831567240507234861375618024750126483648072315264801537
DLS 2: 012345678830217564567834210486123705721456083648072351204561837375608142153780426
DLS 3: 012345678860217534537864210483126705721453086648072351204531867375608142156780423
DLS 4: 012345678830217564567834210786123405421756083648072351204561837375608142153480726
DLS 5: 012345678860217534537864210783126405421753086648072351204531867375608142156480723
...
DLS 22: 012345678123476805485702136831657042268034751370218564756120483647583210504861327
DLS 23: 012345678470813526568432710243176805381657042627084351804561237735208164156720483
DLS 24: 012345678470813526568432710743126805381657042627084351804561237235708164156270483
DLS 25: 012345678471803526568432710243176805380657142627084351804561237735218064156720483
DLS 26: 012345678471803526568432710743126805380657142627084351804561237235718064156270483
Adjacency matrix:
01111111111111111000000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111110000
10000000000000000111110000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
10000000000000000111000000
01111111111111111000001111
01111111111111111000001111
01111111111111111000000000
00000000011000000000000000
00000000011000000000000000
00000000000000000110000000
00000000000000000110000000
00000000000000000110000000
00000000000000000110000000
Different CFs set within combinatorial structure:
CF 1: 012345678123480756486753102831567240507234861375618024750126483648072315264801537
CF 2: 012345678128054736364708251753816042645270813876531420581462307207183564430627185
CF 3: 012345678123860754846527301431752860278016543605483127350278416567134082784601235
CF 4: 012345678120678453768012345874531206345867012536204781687453120201786534453120867
CF 5: 012345678123678405438120756546781032201534867785206314364817520857062143670453281
...
CF 22: 012345678120678345547826013873502164301467852456183720285731406634210587768054231
CF 23: 012345678120458736734860215601784352473512860258036147847603521365271084586127403
CF 24: 012345678120468735865273041403782156658014327271536804536827410347601582784150263
CF 25: 012345678120458736734860215601734852478512360253086147847603521365271084586127403
CF 26: 012345678120468735865273041408732156653014827271586304536827410347601582784150263
Ascending sorted vector of vertices powers:
[2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 16, 16, 20, 20]
Multiset of vertices powers:
{2:6, 4:14, 6:2, 16:2, 20:2}
417. Structure 26N76M26C
DLSs within combinatorial structure:
DLS 1: 012345678120476835234708156758630412847051263601283547386514720573162084465827301
DLS 2: 012345678785603142463172085570426831356814720128567304847051263631280457204738516
DLS 3: 012345678120476835234708156785630412847051263601283547356814720573162084468527301
DLS 4: 012345678160427835734608152658230417847051263201783546386514720523176084475862301
DLS 5: 012345678160427835734608152685230417847051263201783546356814720523176084478562301
...
DLS 22: 012345678785063142463172085570426831356814720128507364847651203631280457204738516
DLS 23: 012345678460127835731608452685230147847056213204783561356814720523471086178562304
DLS 24: 012345678468127305781630452605283147847056213234708561356814720520471836173562084
DLS 25: 012345678428176305281430756705683142874051263637208514356817420540762831163524087
DLS 26: 012345678420176835231408756785630142874051263607283514356817420543762081168524307
Adjacency matrix:
01000000000000000000000000
10111111111110000000000000
01000000000001111111000000
01000000000000000000000000
01000000000001111111110000
01000000000001111111000000
01000000000001111111000000
01000000000001111111000000
01000000000000000000000000
01000000000001111111110000
01000000000001111111000000
01000000000000000000000000
01000000000001111111000000
00101111011010000000001100
00101111011010000000000000
00101111011010000000000000
00101111011010000000000000
00101111011010000000000000
00101111011010000000000000
00101111011010000000000011
00001000010000000000000000
00001000010000000000000000
00000000000001000000000000
00000000000001000000000000
00000000000000000001000000
00000000000000000001000000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835234708156758630412847051263601283547386514720573162084465827301
CF 2: 012345678120486357561873402634752810358260741875124036283017564407631285746508123
CF 3: 012345678120476835234708156785630412847051263601283547356814720573162084468527301
CF 4: 012345678120463857348506721834752016581637402675124380756280143203871564467018235
CF 5: 012345678120468357348506721834752016581637402675124830756280143203871564467013285
...
CF 22: 012345678123508746864072513285761034748630251431256807357824160506417382670183425
CF 23: 012345678120478356748506123864152037587631402635724810356280741203817564471063285
CF 24: 012345678120476853834610725673502481568731042247158306756284130301827564485063217
CF 25: 012345678120486357263817405834752016748560123675104832487231560501673284356028741
CF 26: 012345678123068547874652103231507864758130426487216035365824710506471382640783251
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 12]
Multiset of vertices powers:
{1:8, 2:2, 8:11, 10:4, 12:1}
418. Structure 26N77M26C
DLSs within combinatorial structure:
DLS 1: 012345678120476835756084123541827360367158204485263017834610752208731546673502481
DLS 2: 012345678561837204208751346850476123734610852673502481347128560126084735485263017
DLS 3: 012345678561837204208751346750486123834610752673502481347128560126074835485263017
DLS 4: 012345678541837260268751304854670123736014852673502481307128546120486735485263017
DLS 5: 012345678541837260268751304754680123836014752673502481307128546120476835485263017
...
DLS 22: 012345678123074865754680123531867204207158346485236017860413752648721530376502481
DLS 23: 012345678720486135856014723548721360361857204485263017174630852203178546637502481
DLS 24: 012345678726084135854610723568721304301857246485263017170436852243178560637502481
DLS 25: 012345678561837204208761345850476123734610852673502481347128560125084736486253017
DLS 26: 012345678561837204208761345750486123834610752673502481347128560125074836486253017
Adjacency matrix:
01111111100000000000000000
10000000011111111100000000
10000000011011111000000000
10000000011011111000000000
10000000011011111011000000
10000000011011111000000000
10000000011011111000110000
10000000011011111000001100
10000000011011111000000000
01111111100000000000000011
01111111100000000000000011
01000000000000000000000010
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
01111111100000000000000000
01000000000000000000000000
00001000000000000000000000
00001000000000000000000000
00000010000000000000000000
00000010000000000000000000
00000001000000000000000000
00000001000000000000000000
00000000011100000000000000
00000000011000000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120476835756084123541827360367158204485263017834610752208731546673502481
CF 2: 012345678120476853248157306754680132836014725675203481307821564561738240483562017
CF 3: 012345678120486753248157306854670132736014825675203481307821564561738240483562017
CF 4: 012345678120468357358206741834752016267031584675124830746580123501873462483617205
CF 5: 012345678120468357358206741834752016261037584675124830746580123507813462483671205
...
CF 22: 012345678120478356758206143864152037581637402635724810346580721207813564473061285
CF 23: 012345678120478563573604281247863105684517032351726840735081426806132754468250317
CF 24: 012345678120576834637408512285630147854017263401283756376851420543762081768124305
CF 25: 012345678120567843368250714581703462835416207673024185746138520457682031204871356
CF 26: 012345678120567834468250713581704362835416207674023185746138520357682041203871456
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{1:7, 2:2, 3:1, 8:10, 10:6}
419. Structure 26N78M26C
DLSs within combinatorial structure:
DLS 1: 012345678120453867375816240458760321601534782763128054237681405846072513584207136
DLS 2: 012345678587204136846072513634581702753120864201637485160458327375816240428763051
DLS 3: 012345678587204136846072513634581702763120854201637485150468327375816240428753061
DLS 4: 012345678581207436846072513637584102453720861204631785760158324375816240128463057
DLS 5: 012345678581207436846072513637584102463720851204631785750168324375816240128453067
...
DLS 22: 012345678728153064375816240850461327604538712463027851237684105146702583581270436
DLS 23: 012345678587204136746082513634571802853120764201637485160458327375816240428763051
DLS 24: 012345678587204136746082513634571802863120754201637485150468327375816240428753061
DLS 25: 012345678531287406864072513407536182648723051286401735753160824375814260120658347
DLS 26: 012345678581207436864072513437586102643720851206431785750168324375814260128653047
Adjacency matrix:
01111111100000000000000000
10000000011111111100000000
10000000011111111100000000
10000000010111101111000000
10000000010111101100000000
10000000010111101100000000
10000000010111101100000000
10000000010111101100110000
10000000010111101100000000
01111111100000000000001100
01100000000000000000000000
01111111100000000000000000
01111111100000000000000011
01111111100000000000000000
01111111100000000000001100
01100000000000000000000000
01111111100000000000000000
01111111100000000000000000
00010000000000000000000000
00010000000000000000000000
00000001000000000000000000
00000001000000000000000000
00000000010000100000000000
00000000010000100000000000
00000000000010000000000000
00000000000010000000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120453867375816240458760321601534782763128054237681405846072513584207136
CF 2: 012345678120478536473582160386157402754860321638014257865203714541726083207631845
CF 3: 012345678120463857763158024587631402845076213601284735376812540234507186458720361
CF 4: 012345678123684750851732046685471203547063182706258314234807561470126835368510427
CF 5: 012345678120476853567284031401857326734561280856123407673018542348602715285730164
...
CF 22: 012345678124708536761453280836521407380264715245087361507136824653870142478612053
CF 23: 012345678120478536473852160356187402784560321638014257865203714541726083207631845
CF 24: 012345678120463857763158024587621403845076312601284735376812540234507186458730261
CF 25: 012345678120486537764813025387564102538072461605128743476251380853607214241730856
CF 26: 012345678120576843567284031401857326735461280846123507673018452358602714284730165
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10]
Multiset of vertices powers:
{1:6, 2:4, 8:9, 10:7}
420. Structure 26N78M26C
DLSs within combinatorial structure:
DLS 1: 012345678120473865764852031358607214607538142476281350831724506245160783583016427
DLS 2: 012345678685730142201564783476281350134052867853607214760813425528476031347128506
DLS 3: 012345678720453861564812037853607214601738542476281350385124706247560183138076425
DLS 4: 012345678720453861564812037358607214601738542476281350835124706247560183183076425
DLS 5: 012345678724853061568012437853607214681734502476281350345120786207568143130476825
...
DLS 22: 012345678385720146601574382436281750164057823857603214720816435578432061243168507
DLS 23: 012345678385702146601534782476281350164053827853627014720816435538470261247168503
DLS 24: 012345678385702146601534782476281350764053821853627014120876435538410267247168503
DLS 25: 012345678724853016568012437853107264186734502471286350345620781207568143630471825
DLS 26: 012345678720453816564812037853107264106738542471286350385624701247560183638071425
Adjacency matrix:
01000000000000000000000000
10111111111110000000000000
01000000000001111111000000
01000000000000000000000000
01000000000001111111110000
01000000000001111111000000
01000000000001111111001100
01000000000001111111000000
01000000000000000000000000
01000000000001111111110000
01000000000001111111000000
01000000000000000000000000
01000000000001111111001100
00101111011010000000000000
00101111011010000000000011
00101111011010000000000000
00101111011010000000000000
00101111011010000000000000
00101111011010000000000000
00101111011010000000000000
00001000010000000000000000
00001000010000000000000000
00000010000010000000000000
00000010000010000000000000
00000000000000100000000000
00000000000000100000000000
Different CFs set within combinatorial structure:
CF 1: 012345678120473865764852031358607214607538142476281350831724506245160783583016427
CF 2: 012345678120463857463758021587634102375816240601287435846072513234501786758120364
CF 3: 012345678120568743465731082601852437258473160374106825746280351837024516583617204
CF 4: 012345678120567843465731082601852437258473160384106725746280351837024516573618204
CF 5: 012345678120476853568204731734561280601738524483057162856123407347682015275810346
...
CF 22: 012345678120486753753608241371820564208564137645137802567213480834752016486071325
CF 23: 012345678120568743583704162467810235605473821831256407746132580254087316378621054
CF 24: 012345678120568743583704162467850231601473825835216407746132580254087316378621054
CF 25: 012345678120576843568204731735461280601738425483057162846123507357682014274810356
CF 26: 012345678120568743465731082601852437258473106374106825746280351837624510583017264
Ascending sorted vector of vertices powers:
[1, 1, 1, 1, 1, 1, 2, 2, 2, 2